BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6978298)

  • 1. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. Part I. Actions of dithiothreitol.
    Held KD; Harrop HA; Michael BD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1981 Dec; 40(6):613-22. PubMed ID: 6978298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. II. Glutathione, cysteine and cysteamine.
    Held KD; Harrop HA; Michael BD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jun; 45(6):615-26. PubMed ID: 6429075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. III. Reaction rates.
    Held KD; Harrop HA; Michael BD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jun; 45(6):627-36. PubMed ID: 6429076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of varying O2 concentration on the X-ray sensitivity of transforming DNA.
    Held KD; Powers EL
    Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Dec; 36(6):613-9. PubMed ID: 121992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of radioprotectors and oxygen in cultured mammalian cells. II. Effects of dithiothreitol on radiation-induced DNA damage and comparison with cell survival.
    Held KD; Bren GD; Melder DC
    Radiat Res; 1986 Dec; 108(3):296-306. PubMed ID: 3797635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of polyamines and thiols on the radiation sensitivity of bacterial transforming DNA.
    Held KD; Awad S
    Int J Radiat Biol; 1991 Mar; 59(3):699-710. PubMed ID: 1672358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of radioprotectors and oxygen in cultured mammalian cells. I. Dithiothreitol effects on radiation-induced cell killing.
    Held KD
    Radiat Res; 1985 Mar; 101(3):424-33. PubMed ID: 3983360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced survival of gamma-irradiated Escherichia coli following pretreatment with dithiothreitol.
    Smith ST; Claycamp HG
    Int J Radiat Biol Relat Stud Phys Chem Med; 1988 May; 53(5):829-37. PubMed ID: 3283067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of inhibition of aminoacylase activity by dithiothreitol or 2-mercaptoethanol.
    Yang Y; Wang HR; Zhou HM
    Int J Pept Protein Res; 1996 Dec; 48(6):532-8. PubMed ID: 8985786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfhydryl protection and the oxygen effect on radiation-induced inactivation of r-chromatin in vitro. Influence of an OH scavenger: t-butanol.
    Herskind C
    Radiat Res; 1988 Jul; 115(1):141-51. PubMed ID: 3393628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical-induced strand break formation of poly(U) in anoxic solution. Effect of dithiothreitol and tetranitromethane.
    Lemaire DG; Bothe E; Schulte-Frohlinde D
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Feb; 51(2):319-30. PubMed ID: 3493992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of production of hydroxyl radicals in the copper-catalyzed oxidation of dithiothreitol.
    Kachur AV; Held KD; Koch CJ; Biaglow JE
    Radiat Res; 1997 Apr; 147(4):409-15. PubMed ID: 9092919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of oxygen on the repair of direct radiation damage to DNA by thiols in model systems.
    Becker D; Summerfield S; Gillich S; Sevilla MD
    Int J Radiat Biol; 1994 May; 65(5):537-48. PubMed ID: 7910193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics.
    Naish-Byfield S; Cooksey CJ; Riley PA
    Biochem J; 1994 Nov; 304 ( Pt 1)(Pt 1):155-62. PubMed ID: 7998927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions.
    Netto LE; Stadtman ER
    Arch Biochem Biophys; 1996 Sep; 333(1):233-42. PubMed ID: 8806776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical competition in target radical reactions: numerical simulation of the theory and comparison with measured oxygen effect on DNA damage in cells.
    Todd P; Nishidai T; Révész L; Edgren M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Dec; 50(6):1023-37. PubMed ID: 3491800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Chemical repair' in irradiated DNA solutions containing thiols and/or disulphides. Further evidence for disulphide radical anions acting as electron donors.
    Prütz WA
    Int J Radiat Biol; 1989 Jul; 56(1):21-33. PubMed ID: 2569007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method.
    Biaglow JE; Manevich Y; Uckun F; Held KD
    Free Radic Biol Med; 1997; 22(7):1129-38. PubMed ID: 9098085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection after x-irradiation by 1,4-dithiothreitol of two mammalian cell types in vitro.
    Bick YA; Brown JK
    Cytobios; 1979; 25(99-100):163-74. PubMed ID: 546598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dithiothreitol pretreatment and inducible repair in UV-irradiated Escherichia coli K12 cells.
    Claycamp HG
    Int J Radiat Biol Relat Stud Phys Chem Med; 1988 Mar; 53(3):381-93. PubMed ID: 3278995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.