These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6978643)

  • 1. Dynamic characteristics of the otolithic oculomotor system.
    Tokita T; Miyata H; Masaki M; Ikeda S
    Ann N Y Acad Sci; 1981; 374():56-68. PubMed ID: 6978643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensatory head and eye movements in the frog and their contribution to stabilization of gaze.
    Dieringer N; Precht W
    Exp Brain Res; 1982; 47(3):394-406. PubMed ID: 6982173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otolithic-acoustic interaction in the control of eye movement.
    Buizza A; Léger A; Berthoz A; Schmid R
    Exp Brain Res; 1979 Aug; 36(3):509-22. PubMed ID: 38982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification.
    Collewijn H; Martins AJ; Steinman RM
    J Physiol; 1983 Jul; 340():259-86. PubMed ID: 6604152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear interaction of the vestibular and the eye tracking system in man.
    Bock O
    Exp Brain Res; 1982; 47(3):461-4. PubMed ID: 6982175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of otolithic stimulation by horizontal linear acceleration on optokinetic nystagmus and visual motion perception.
    Buizza A; Léger A; Droulez J; Berthoz A; Schmid R
    Exp Brain Res; 1980; 39(2):165-76. PubMed ID: 6105089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of human subjective and oculomotor responses to sinusoidal vertical linear acceleration.
    Jones GM; Rolph R; Downing GH
    Acta Otolaryngol; 1980; 90(5-6):431-40. PubMed ID: 6971041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of eye movements induced by high frequency rotation of the head.
    Vercher JL; Gauthier GM; Marchetti E; Mandelbrojt P; Ebihara Y
    Aviat Space Environ Med; 1984 Nov; 55(11):1046-50. PubMed ID: 6334515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual influence on head shaking using the vestibular autorotation test.
    Cheung B; Money K; Sarkar P
    J Vestib Res; 1996; 6(6):411-22. PubMed ID: 8968969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.
    Paige GD; Tomko DL
    J Neurophysiol; 1991 May; 65(5):1183-96. PubMed ID: 1869912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The otolithic contribution to vertical ocular stability in the cat.
    Pettorossi VE; Draicchio F; Ferraresi A; Bruni R
    Arch Ital Biol; 1994 Oct; 132(4):199-213. PubMed ID: 7893195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual-vestibular interaction in humans during active and passive, vertical head movement.
    Demer JL; Oas JG; Baloh RW
    J Vestib Res; 1993; 3(2):101-14. PubMed ID: 8275247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze strategies during linear motion in head-free humans.
    Borel L; Le Goff B; Charade O; Berthoz A
    J Neurophysiol; 1994 Nov; 72(5):2451-66. PubMed ID: 7884471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unilateral habituation of vestibulo-ocular responses in the cat.
    Jeannerod M; Clement G; Courjon JH; Schmid R
    Ann N Y Acad Sci; 1981; 374():340-51. PubMed ID: 6978634
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of the horizontal and vertical vestibulo-ocular reflexes of the rabbit.
    Barmack NH
    J Physiol; 1981 May; 314():547-64. PubMed ID: 7310702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency harmonic acceleration as a test of labyrinthine function: basic methods and illustrative cases.
    Wolfe JW; Engelken EJ; Kos CM
    Otolaryngology; 1978; 86(1):ORL-130-42. PubMed ID: 114912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gain and phase characteristics of compensatory eye movements in light and darkness. A study with a broad frequency-band rotatory test.
    Larsby B; Hydén D; Odkvist LM
    Acta Otolaryngol; 1984; 97(3-4):223-32. PubMed ID: 6609520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vestibulo-ocular and optokinetic reactions to rotation and their interaction in the rabbit.
    Baarsma E; Collewijn H
    J Physiol; 1974 May; 238(3):603-25. PubMed ID: 4546977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.