These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Freeze-fracture approaches to ionophore localization in normal and myelin-deficient nerves. Rosenbluth J Adv Neurol; 1981; 31():391-418. PubMed ID: 7325047 [TBL] [Abstract][Full Text] [Related]
6. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. Ellisman MH J Neurocytol; 1979 Dec; 8(6):719-35. PubMed ID: 541690 [TBL] [Abstract][Full Text] [Related]
7. Nodal and paranodal structure during Wallerian degeneration in frog spinal nerve. Ishise J; Rosenbluth J Brain Res; 1987 Aug; 418(1):85-97. PubMed ID: 3499206 [TBL] [Abstract][Full Text] [Related]
8. Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves. Tao-Cheng JH; Rosenbluth J Brain Res; 1980 Oct; 199(2):249-65. PubMed ID: 6251942 [TBL] [Abstract][Full Text] [Related]
9. Extranodal particle accumulations in the axolemma of myelinated frog optic axons. Tao-Cheng JH; Rosenbluth J Brain Res; 1984 Aug; 308(2):289-300. PubMed ID: 6332658 [TBL] [Abstract][Full Text] [Related]
10. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. Martini R; Schachner M J Cell Biol; 1986 Dec; 103(6 Pt 1):2439-48. PubMed ID: 2430983 [TBL] [Abstract][Full Text] [Related]
11. Ultrastructural cytochemical localization of 5'-nucleotidase activity in axon-myelin-Schwann cell complex. Dolapchieva S; Ichev K; Ovtscharoff W Acta Histochem; 1988; 83(2):125-35. PubMed ID: 2844052 [TBL] [Abstract][Full Text] [Related]
12. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Menichella DM; Arroyo EJ; Awatramani R; Xu T; Baron P; Vallat JM; Balsamo J; Lilien J; Scarlato G; Kamholz J; Scherer SS; Shy ME Mol Cell Neurosci; 2001 Dec; 18(6):606-18. PubMed ID: 11749037 [TBL] [Abstract][Full Text] [Related]
14. Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons. Radtke C; Akiyama Y; Lankford KL; Vogt PM; Krause DS; Kocsis JD Neurosci Lett; 2005 Oct; 387(2):85-9. PubMed ID: 16084645 [TBL] [Abstract][Full Text] [Related]
15. Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp. Wilson GF; Chiu SY J Neurosci; 1990 Oct; 10(10):3263-74. PubMed ID: 1698944 [TBL] [Abstract][Full Text] [Related]
16. Developmental changes at the node and paranode in human sural nerves: morphometric and fine-structural evaluation. Bertram M; Schröder JM Cell Tissue Res; 1993 Sep; 273(3):499-509. PubMed ID: 8402830 [TBL] [Abstract][Full Text] [Related]
17. Membrane specializations and cytoplasmic channels of Schwann cells in mammalian peripheral nerve as seen in freeze-fracture replicas. Kruger L; Stolinski C; Martin BG; Gross MB J Comp Neurol; 1979 Aug; 186(4):571-601. PubMed ID: 15116690 [TBL] [Abstract][Full Text] [Related]
18. Return of axonal and glial membrane specializations during remyelination after tellurium-induced demyelination. Wiley-Livingston CA; Ellisman MH J Neurocytol; 1982 Feb; 11(1):65-80. PubMed ID: 7062092 [TBL] [Abstract][Full Text] [Related]
19. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. Rosenbluth J J Neurocytol; 1976 Dec; 5(6):731-45. PubMed ID: 1087339 [TBL] [Abstract][Full Text] [Related]