These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 6979260)

  • 21. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation.
    Macefield VG; Fuglevand AJ; Bigland-Ritchie B
    J Neurophysiol; 1996 Jun; 75(6):2509-19. PubMed ID: 8793760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stiffness, force, and sarcomere shortening during a twitch in frog semitendinosus muscle bundles.
    Schoenberg M; Wells JB
    Biophys J; 1984 Feb; 45(2):389-97. PubMed ID: 6607749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of activation in frog skeletal muscle at sarcomere lengths beyond myofilament overlap.
    Burchfield DM; Rall JA
    Biophys J; 1985 Dec; 48(6):1049-51. PubMed ID: 3879188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of isometric contractile properties in hindlimb extensor muscles of the frogs Rana pipiens and Bufo marinus: functional correlations with differences in hopping performance.
    Chadwell BA; Hartwell HJ; Peters SE
    J Morphol; 2002 Mar; 251(3):309-22. PubMed ID: 11835367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The variation of characteristics of twitch and tetanic contractions with sarcomere length in isolated muscle fibres of the frog.
    Cecchi G; Colomo F; Lombardi V
    Arch Fisiol; 1979 Jun; 71(1-4):279-302. PubMed ID: 318017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue and posttetanic potentiation in single muscle fibers of the frog.
    Vergara JL; Rapoprot SI; Nassar-Gentina V
    Am J Physiol; 1977 May; 232(5):C185-90. PubMed ID: 300990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of hypertonic solutions on contraction of frog tonic muscle fibers.
    Godt RE; Kirby AC; Gordon AM
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C148-53. PubMed ID: 6607680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contractile properties of fast and slow twitch muscles of the rat at temperatures between 6 and 42 degrees C.
    Kössler F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):815-22. PubMed ID: 3446207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of fatigue and recovery on contractile properties of frog muscle.
    Fitts RH; Holloszy JO
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Dec; 45(6):899-902. PubMed ID: 310431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle fatigue in frog semitendinosus: role of intracellular pH.
    Thompson LV; Balog EM; Fitts RH
    Am J Physiol; 1992 Jun; 262(6 Pt 1):C1507-12. PubMed ID: 1616012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexplained enthalpy production in contracting skeletal muscles.
    Homsher E; Kean CJ
    Fed Proc; 1982 Feb; 41(2):149-54. PubMed ID: 6977462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle fatigue in the frog semitendinosus: role of the high-energy phosphates and Pi.
    Thompson LV; Fitts RH
    Am J Physiol; 1992 Oct; 263(4 Pt 1):C803-9. PubMed ID: 1415669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle force and moment arm contributions to torque production in frog hindlimb.
    Lieber RL; Boakes JL
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C769-72. PubMed ID: 3259841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue-induced alterations in Ca2+ and caffeine sensitivities of skinned muscle fibers.
    Williams JH; Ward CW; Klug GA
    J Appl Physiol (1985); 1993 Aug; 75(2):586-93. PubMed ID: 8226456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow fibers in the frog cruralis muscle.
    Gilly WF
    Tissue Cell; 1975; 7(1):203-10. PubMed ID: 1078917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle.
    Westerblad H; Duty S; Allen DG
    J Appl Physiol (1985); 1993 Jul; 75(1):382-8. PubMed ID: 8397180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatigue in frog skeletal muscle fibres and effects of methylxanthine derivatives.
    Khan AR; Bengtsson B
    Acta Physiol Scand; 1985 May; 124(1):35-41. PubMed ID: 3874523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel thienylhydrazone, (2-thienylidene)3,4-methylenedioxybenzoylhydrazine, increases inotropism and decreases fatigue of skeletal muscle.
    Gonzalez-Serratos H; Chang R; Pereira EF; Castro NG; Aracava Y; Melo PA; Lima PC; Fraga CA; Barreiro EJ; Albuquerque EX
    J Pharmacol Exp Ther; 2001 Nov; 299(2):558-66. PubMed ID: 11602667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aminophylline enhances contractility of frog skeletal muscle: an effect dependent on extracellular calcium.
    Ridings JW; Barry SR; Faulkner JA
    J Appl Physiol (1985); 1989 Aug; 67(2):671-6. PubMed ID: 2793668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle.
    Palmer BM; Moore RL
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C1012-9. PubMed ID: 2596580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.