These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 697944)

  • 1. Xanthine oxidase-induced foot-edema in rats: involement of oxygen radicals.
    Ohmori H; Komoriya K; Azuma A; Hashimoto Y; Kurozumi S
    Biochem Pharmacol; 1978 May; 27(9):1397-400. PubMed ID: 697944
    [No Abstract]   [Full Text] [Related]  

  • 2. Reperfusion-induced arrhythmias: a study of the role of xanthine oxidase-derived free radicals in the rat heart.
    Manning A; Bernier M; Crome R; Little S; Hearse D
    J Mol Cell Cardiol; 1988 Jan; 20(1):35-45. PubMed ID: 3367377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen intermediates reduce inactivation of serotonin in isolated, perfused rat lungs.
    Kjaeve J; Vaage J; Bjertnaes L
    Circ Shock; 1989 Jun; 28(2):79-87. PubMed ID: 2736728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxygen free radicals on rabbit and human erythrocytes. Studies on cellular deformability.
    Hirayama T; Folmerz P; Hansson R; Jonsson O; Pettersson S; Roberts D; Scherstén T
    Scand J Thorac Cardiovasc Surg; 1986; 20(3):247-52. PubMed ID: 3810094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxygen free radicals and scavengers on the cardiac extracellular collagen matrix during ischemia-reperfusion.
    Lonn E; Factor SM; Van Hoeven KH; Wen WH; Zhao M; Dawood F; Liu P
    Can J Cardiol; 1994 Mar; 10(2):203-13. PubMed ID: 8143221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cellular superoxide dismutase against reactive oxygen metabolite-induced cell damage in cultured rat hepatocytes.
    Ito Y; Hiraishi H; Razandi M; Terano A; Harada T; Ivey KJ
    Hepatology; 1992 Jul; 16(1):247-54. PubMed ID: 1319953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological protection by superoxide dismutase.
    Lavelle F; Michelson AM; Dimitrijevic L
    Biochem Biophys Res Commun; 1973 Nov; 55(2):350-7. PubMed ID: 4588214
    [No Abstract]   [Full Text] [Related]  

  • 9. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation.
    Pellegrini-Giampietro DE; Cherici G; Alesiani M; CarlĂ  V; Moroni F
    J Neurochem; 1988 Dec; 51(6):1960-3. PubMed ID: 2903225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids.
    Basu DK; Karmazyn M
    J Pharmacol Exp Ther; 1987 Aug; 242(2):673-85. PubMed ID: 3112369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals.
    Chan PH; Schmidley JW; Fishman RA; Longar SM
    Neurology; 1984 Mar; 34(3):315-20. PubMed ID: 6546610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen metabolites stimulate mucous glycoprotein secretion from cultured rat gastric mucous cells.
    Hiraishi H; Terano A; Ota S; Mutoh H; Sugimoto T; Razandi M; Ivey KJ
    Am J Physiol; 1991 Oct; 261(4 Pt 1):G662-8. PubMed ID: 1928352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen radicals induce pulmonary vasoconstriction in pigs without activating plasma proteolytic cascade systems.
    Sanderud J; Saugstad OD
    Eur Surg Res; 1993; 25(3):137-45. PubMed ID: 8500505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide radical potentiates invasive capacity of rat ascites hepatoma cells in vitro.
    Shinkai K; Mukai M; Akedo H
    Cancer Lett; 1986 Jul; 32(1):7-13. PubMed ID: 3017547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible mechanism responsible for allopurinol-nephrotoxicity: lipid peroxidation and systems of producing- and scavenging oxygen radicals.
    Suzuki Y; Sudo J
    Jpn J Pharmacol; 1987 Oct; 45(2):271-9. PubMed ID: 3437594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of oxygen-derived free radicals in two models of experimental acute pancreatitis: effects of catalase, superoxide dismutase, dimethylsulfoxide, and allopurinol.
    Steer ML; Rutledge PL; Powers RE; Saluja M; Saluja AK
    Klin Wochenschr; 1991 Dec; 69(21-23):1012-7. PubMed ID: 1724678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen metabolites produce pulmonary vasoconstriction in young pigs.
    Sanderud J; Norstein J; Saugstad OD
    Pediatr Res; 1991 Jun; 29(6):543-7. PubMed ID: 1866209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of oxygen derived free radicals in platelet activating factor induced bowel necrosis.
    Cueva JP; Hsueh W
    Gut; 1988 Sep; 29(9):1207-12. PubMed ID: 3197995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.