These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6980163)

  • 1. Redox regulation of autorhythmic heart contractions and the effect of acetylcholine failed to manifest itself by decreasing [Ca2+]0.
    Práger P; Dely M; Puppi A; Gács E
    Gen Pharmacol; 1982; 13(2):147-51. PubMed ID: 6980163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [T-channels and Na+,Ca2+-exchangers as components of the Ca2+-system of the myocardial activity regulation of the frog Rana temporaria].
    Shemarova IV; Kuznetsov SV; Demina IN; Nesterov VP
    Zh Evol Biokhim Fiziol; 2009; 45(3):319-28. PubMed ID: 19569558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox agents modulate a(K+)0 changes evoked by acetylcholine and adrenaline in frog heart.
    Puppi A; Wittmann I; Dely M
    Acta Physiol Hung; 1990; 76(1):61-9. PubMed ID: 2088012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The negative inotropic effect of acetylcholine on ferret ventricular myocardium.
    Boyett MR; Kirby MS; Orchard CH; Roberts A
    J Physiol; 1988 Oct; 404():613-35. PubMed ID: 3253444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of acetylcholine in the Ca2+-dependent regulation of functional activity of myocardium of frog Rana temporaria].
    Shemarova IV; Kuznetsov SV; Demina IN; Nesterov VP
    Zh Evol Biokhim Fiziol; 2008; 44(6):591-602. PubMed ID: 19198160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic mechanism of inotropic effect of prostaglandin E1 on frog atrial muscle.
    Mironneau J; Grosset A
    Pflugers Arch; 1976 Oct; 366(1):79-81. PubMed ID: 1086461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of acetylcholine on calcium efflux from atrial myocardium.
    Prokopczuk A; Pytkowski B; Lewartowski B
    Eur J Pharmacol; 1981 Mar; 70(1):1-6. PubMed ID: 7215439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional differences in the negative inotropic effect of acetylcholine within the canine ventricle.
    Yang ZK; Boyett MR; Janvier NC; McMorn SO; Shui Z; Karim F
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):789-806. PubMed ID: 8734990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a phorbol ester on acetylcholine-induced Ca2+ mobilization and contraction in the porcine coronary artery.
    Itoh T; Kubota Y; Kuriyama H
    J Physiol; 1988 Mar; 397():401-19. PubMed ID: 2457701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic inotropic effects of a Ca2+ channel activator CGP28392 in rat myocardium: possible relation to intracellular Ca2+ release.
    Kobrinsky E; Saxon M
    Br J Pharmacol; 1987 Nov; 92(3):499-504. PubMed ID: 3427265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of myocardial K+ channels by bromobenzoyl-methyladamantylamine, an adamantane derivative.
    Mészáros J; Kelemen K; Markó R; Kecskeméti V; Szegi J
    Eur J Pharmacol; 1982 Oct; 84(3-4):151-60. PubMed ID: 6293846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between acetylcholine-evoked electrical activity, effect of cyclic AMP and actual redox state in frog rectus muscle.
    Puppi A; Práger P; Dely M
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):89-94. PubMed ID: 6278808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cyclopiazonic acid on membrane currents, contraction and intracellular calcium transients in frog heart.
    Badaoui A; Huchet-Cadiou C; Léoty C
    J Mol Cell Cardiol; 1995 Nov; 27(11):2495-505. PubMed ID: 8596200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide synthase does not participate in negative inotropic effect of acetylcholine in frog heart.
    Méry PF; Hove-Madsen L; Chesnais JM; Hartzell HC; Fischmeister R
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1178-88. PubMed ID: 8967355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the negative inotropic effect of acetylcholine on frog atrial fibres.
    Nargeot J; Garnier D; Rougier O
    J Physiol (Paris); 1981 Mar; 77(8):829-43. PubMed ID: 6281418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of the isometric myocardial contractions during its activation by the slow response (author's transl)].
    Vassallo DV; Mill JG
    Rev Bras Pesqui Med Biol; 1978 May; 11(1):25-33. PubMed ID: 653014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thapsigargin in normal and pretreated with ryanodine guinea pig cardiomyocytes.
    Lewartowski B; Rózycka M; Janiak R
    Am J Physiol; 1994 May; 266(5 Pt 2):H1829-39. PubMed ID: 8203582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of milrinone and piroximone on intracellular calcium handling in working myocardium from the ferret.
    Gwathmey JK; Morgan JP
    Br J Pharmacol; 1985 May; 85(1):97-108. PubMed ID: 2992656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of stored calcium in contractions of cat tracheal smooth muscle produced by electrical stimulation, acetylcholine and high K+.
    Ito Y; Itoh T
    Br J Pharmacol; 1984 Nov; 83(3):667-76. PubMed ID: 6439272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle.
    Fischmeister R; Hartzell HC
    J Physiol; 1986 Jul; 376():183-202. PubMed ID: 2432231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.