These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6981381)

  • 41. Direct measurement of the midpoint potential of the primary electron acceptor in Rhodopseudomonas spheroides in situ and in the isolated state: some relationships with pH and o-phenanthroline.
    Dutton PL; Leigh JS; Wraight CA
    FEBS Lett; 1973 Oct; 36(2):169-73. PubMed ID: 4356786
    [No Abstract]   [Full Text] [Related]  

  • 42. The function of ubiquinone-10 both in the electron transport system and in the energy conservation system of chromatophores from Rhodospirillum rubrum.
    Yamamoto N; Hatakeyama H; Nishikawa K; Horio T
    J Biochem; 1970 Apr; 67(4):587-98. PubMed ID: 5453049
    [No Abstract]   [Full Text] [Related]  

  • 43. Ubiquinone in Rhodopseudomonas sphaeroides. Some thermodynamic properties.
    Takamiya KI; Dutton PL
    Biochim Biophys Acta; 1979 Apr; 546(1):1-16. PubMed ID: 221012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of the decay rates of the triplet state of Rhodopseudomonas sphaeroides by fast laser-flash ESR spectroscopy.
    Gast P; Hoff AJ
    FEBS Lett; 1978 Jan; 85(1):183-8. PubMed ID: 202494
    [No Abstract]   [Full Text] [Related]  

  • 45. The kinetics of flash-induced electron flow in bacteriochlorophyll-less membranes of Rhodopseudomonas sphaeroides reconstituted with reaction centres.
    Hunter CN; Jones OT
    Biochim Biophys Acta; 1979 Feb; 545(2):339-51. PubMed ID: 216400
    [No Abstract]   [Full Text] [Related]  

  • 46. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS; Dutton PL
    Biochim Biophys Acta; 1974 Jul; 357(1):67-77. PubMed ID: 4370313
    [No Abstract]   [Full Text] [Related]  

  • 47. DCCD inhibits the reactions of the iron-sulfur protein in Rhodobacter sphaeroides chromatophores.
    Shinkarev VP; Ugulava NB; Crofts AR; Wraight CA
    Biochemistry; 2000 Dec; 39(51):16206-12. PubMed ID: 11123950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system.
    Drachev LA; Semenov AYu ; Skulachev VP; Smirnova IA; Chamorovsky SK; Kononenko AA; Rubin AB; Uspenskaya NYa
    Eur J Biochem; 1981 Jul; 117(3):483-9. PubMed ID: 6793358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-induced electron transfer reactions and adenosine triphosphate formation by Rhodospirillum rubrum chromatophores.
    Zaugg WS; Vernon LP; Helmer G
    Arch Biochem Biophys; 1967 Mar; 119(1):560-71. PubMed ID: 6052446
    [No Abstract]   [Full Text] [Related]  

  • 50. Electrogenic proton transfer in Rhodobacter sphaeroides reaction centers: effect of coenzyme Q(10) substitution by decylubiquinone in the Q(B) binding site.
    Gopta OA; Semenov AY; Bloch DA
    FEBS Lett; 2001 Jun; 499(1-2):116-20. PubMed ID: 11418124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photochemical activities of K3Fe(CN)6-treated chromatophores from Rhodospirillum rubrum.
    Beugeling T
    Biochim Biophys Acta; 1968 Jan; 153(1):143-53. PubMed ID: 5638384
    [No Abstract]   [Full Text] [Related]  

  • 52. Redox equilibrium in the acceptor quinone complex of isolated reaction centers and the mode of action of O-phenanthroline.
    Wraight CA; Stein RR
    FEBS Lett; 1980 Apr; 113(1):73-7. PubMed ID: 6966586
    [No Abstract]   [Full Text] [Related]  

  • 53. Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus.
    Monger TG; Parson WW
    Biochim Biophys Acta; 1977 Jun; 460(3):393-407. PubMed ID: 301747
    [No Abstract]   [Full Text] [Related]  

  • 54. [Electron acceptors in photosynthetic reaction centers from Rhodopseudomonas spheroides].
    Lukashev EP; Kononenko AA; Timofeev KN; Uspenskaia NIa; Rubin AB
    Biokhimiia; 1979 Jul; 44(7):1223-33. PubMed ID: 227482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Hsi ES; Bolton JR
    Biochim Biophys Acta; 1974 Apr; 347(1):126-33. PubMed ID: 4373063
    [No Abstract]   [Full Text] [Related]  

  • 56. Photosynthetic reaction centers and primary photochemical reactions.
    Ke B
    Photochem Photobiol; 1974 Dec; 20(6):542-6. PubMed ID: 4376245
    [No Abstract]   [Full Text] [Related]  

  • 57. Nature of photochemical reactions in chromatophores of Chromatium D. III. Heterogeneity of the photosynthetic units.
    Takamiya KI; Nishimura M
    Biochim Biophys Acta; 1975 Jul; 396(1):93-103. PubMed ID: 167850
    [TBL] [Abstract][Full Text] [Related]  

  • 58. H+ uptake by chromatophores from Rhodopseudomonas spheroides. The relation between rapid H+ uptake and the H+ pump.
    Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1974 May; 347(2):264-72. PubMed ID: 4546206
    [No Abstract]   [Full Text] [Related]  

  • 59. Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26.
    Abdourakhmanov IA; Ganago AO; Erokhin YE; Solov'ev AA; Chugunov VA
    Biochim Biophys Acta; 1979 Apr; 546(1):183-6. PubMed ID: 312655
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL
    Biochim Biophys Acta; 1971 Jan; 226(1):63-80. PubMed ID: 5549985
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.