These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6981690)

  • 1. Regional cerebral blood flow changes in cortex and basal ganglia during voluntary movements in normal human volunteers.
    Roland PE; Meyer E; Shibasaki T; Yamamoto YL; Thompson CJ
    J Neurophysiol; 1982 Aug; 48(2):467-80. PubMed ID: 6981690
    [No Abstract]   [Full Text] [Related]  

  • 2. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hemodynamics in the cerebral cortex and basal ganglia--observation on normal volunteers and patients with lacunes using PET].
    Yamaguchi S; Fukuyama H; Yamauchi H; Kimura J
    Rinsho Shinkeigaku; 1991 Oct; 31(10):1070-6. PubMed ID: 1802460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study.
    Fox PT; Fox JM; Raichle ME; Burde RM
    J Neurophysiol; 1985 Aug; 54(2):348-69. PubMed ID: 3875696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study.
    Weeks RA; Honda M; Catalan MJ; Hallett M
    Neuroimage; 2001 Jul; 14(1 Pt 1):219-30. PubMed ID: 11525332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral blood flow in corticobasal degeneration.
    Okuda B; Tachibana H
    Mov Disord; 1995 Nov; 10(6):803. PubMed ID: 8750006
    [No Abstract]   [Full Text] [Related]  

  • 7. [Regional cerebral blood flow image by the method of single photon emission computed tomography: continuous intracarotid injection of krypton-81m (author's transl)].
    Maeda T; Matsuda H; Tonami N; Hisada K; Fujii H; Hayashi M
    Kaku Igaku; 1980 Aug; 17(7):829-32. PubMed ID: 6969328
    [No Abstract]   [Full Text] [Related]  

  • 8. Cerebral circulation and oxygen metabolism in childhood moyamoya disease: a perioperative positron emission tomography study.
    Ikezaki K; Matsushima T; Kuwabara Y; Suzuki SO; Nomura T; Fukui M
    J Neurosurg; 1994 Dec; 81(6):843-50. PubMed ID: 7965114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping motor representations with positron emission tomography.
    Decety J; Perani D; Jeannerod M; Bettinardi V; Tadary B; Woods R; Mazziotta JC; Fazio F
    Nature; 1994 Oct; 371(6498):600-2. PubMed ID: 7935791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET.
    Boecker H; Dagher A; Ceballos-Baumann AO; Passingham RE; Samuel M; Friston KJ; Poline J; Dettmers C; Conrad B; Brooks DJ
    J Neurophysiol; 1998 Feb; 79(2):1070-80. PubMed ID: 9463462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement.
    Petit L; Orssaud C; Tzourio N; Salamon G; Mazoyer B; Berthoz A
    J Neurophysiol; 1993 Apr; 69(4):1009-17. PubMed ID: 8492144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor system: cortex, basal ganglia, and cerebellum.
    Jueptner M; Krukenberg M
    Neuroimaging Clin N Am; 2001 May; 11(2):203-19, viii. PubMed ID: 11489735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of basal Moyamoya networks in cerebral circulation in Moyamoya disease].
    Nakagawa Y; Kinomoto H; Mabuchi S; Tsuru M; Itoh K; Takei H; Miyasaka K; Nishiya M; Tokuda S; Satoh M
    No Shinkei Geka; 1982 Dec; 10(12):1263-71. PubMed ID: 6984880
    [No Abstract]   [Full Text] [Related]  

  • 15. Different cortical areas in man in organization of voluntary movements in extrapersonal space.
    Roland PE; Skinhøj E; Lassen NA; Larsen B
    J Neurophysiol; 1980 Jan; 43(1):137-50. PubMed ID: 7351548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of regional cerebral blood flow in the dog using ultrafast computed tomography. Experimental validation.
    Gobbel GT; Cann CE; Iwamoto HS; Fike JR
    Stroke; 1991 Jun; 22(6):772-9. PubMed ID: 2057978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow correlates of higher brain dysfunctions in corticobasal degeneration.
    Okuda B; Tachibana H; Kawabata K; Takeda M; Sugita M
    J Geriatr Psychiatry Neurol; 1999; 12(4):189-93. PubMed ID: 10616866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomographic assessment of cerebral perfusion using a single-photon emitter (krypton-81m) and a rotating gamma camera.
    Fazio F; Fieschi C; Collice M; Nardini M; Banfi F; Possa M; Spinelli F
    J Nucl Med; 1980 Dec; 21(12):1139-45. PubMed ID: 6969300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positron emission tomography demonstrated localized luxury perfusion in subacute sclerosing panencephalitis.
    Yoshikawa H; Fueki N; Yoneyama H; Ogawa M; Sakuragawa N
    J Child Neurol; 1990 Oct; 5(4):311-5. PubMed ID: 2246484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional cerebral blood flow in neuropsychology.
    Risberg J
    Neuropsychologia; 1986; 24(1):135-40. PubMed ID: 3486377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.