BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 6981768)

  • 1. Decreased chemiluminescence in thymocytes of dystrophic hamsters.
    Con AR; Wrogemann K
    Muscle Nerve; 1982; 5(5):382-6. PubMed ID: 6981768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemiluminescence and immune cell activation. I. Early activation of rat thymocytes can be monitored by chemiluminescence measurements.
    Wrogemann K; Weidemann MJ; Peskar BA; Staudinger H; Rietschel ET; Fischer H
    Eur J Immunol; 1978 Oct; 8(10):749-52. PubMed ID: 361418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescence and immune cell activation. II. Enhancement of concanavalin A-induced chemiluminescence following in vitro preincubation of rat thymocytes; dependency on macrophage-lymphocyte interaction.
    Wrogemann K; Weidemann MJ; Ketelsen UP; Wekerle H; Fischer H
    Eur J Immunol; 1980 Jan; 10(1):36-40. PubMed ID: 6965913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of a cellular defect in the thymus of hereditary muscular dystrophic chickens.
    Kline K; Sanders BG
    Thymus; 1982 Jan; 4(1):9-18. PubMed ID: 7058545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane protein phosphorylation in the intact erythrocytes of genetically dystrophic hamsters.
    Johnson RM
    Muscle Nerve; 1984 Jun; 7(5):369-73. PubMed ID: 6738574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse.
    Yagi H; Matsumoto M; Nakamura M; Makino S; Suzuki R; Harada M; Itoh T
    J Immunol; 1996 Oct; 157(8):3412-9. PubMed ID: 8871639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apoptosis in the mammalian thymus during normal histogenesis and under various in vitro and in vivo experimental conditions.
    Bodey B; Bodey B; Kaiser HE
    In Vivo; 1998; 12(1):123-33. PubMed ID: 9575434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance.
    Itoh M; Takahashi T; Sakaguchi N; Kuniyasu Y; Shimizu J; Otsuka F; Sakaguchi S
    J Immunol; 1999 May; 162(9):5317-26. PubMed ID: 10228007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphocyte subpopulations in the thymus of SJL/J mice: age-related alterations and the effect of spontaneous reticulum cell sarcoma development.
    Dumont F
    J Clin Lab Immunol; 1980 Jan; 3(1):51-61. PubMed ID: 6991706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A freeze-fracture analysis of intramembrane particle densities on dystrophic hamster heart sarcolemma.
    Graham KA; Shivers RR; Atkinson BG
    Muscle Nerve; 1984 Sep; 7(7):513-23. PubMed ID: 6544370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural killer (NK) cell activity in murine muscular dystrophy. II. Age-related tissue distribution and enhanced NK activity in the thymus of dystrophic mice.
    Semple JW; Wade AW; Szewczuk MR
    Clin Immunol Immunopathol; 1984 Nov; 33(2):144-53. PubMed ID: 6488587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human CD45RC specificity. A novel marker for T cells at different maturation and activation stages.
    Zapata JM; Pulido R; Acevedo A; Sánchez-Madrid F; de Landázuri MO
    J Immunol; 1994 Apr; 152(8):3852-61. PubMed ID: 8144955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of thyroxine treatment on diaphragm and EDL of normal and dystrophic hamsters.
    Singh YN; Schlenker EH; Singh BN; Burbach JA
    Can J Physiol Pharmacol; 2004 May; 82(5):345-52. PubMed ID: 15213735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of thymic factor X-5 (TFX-5) "Polfa" on mitogenic response of murine thymocytes to concanavalin A.
    Kisielow P; Pajtasz E
    Arch Immunol Ther Exp (Warsz); 1981; 29(6):863-6. PubMed ID: 6983872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fas is expressed early in human thymocyte development but does not transmit an apoptotic signal.
    Jenkins M; Keir M; McCune JM
    J Immunol; 1999 Aug; 163(3):1195-204. PubMed ID: 10415014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous oxygen radicals modulate protein tyrosine phosphorylation and JNK-1 activation in lectin-stimulated thymocytes.
    Pani G; Colavitti R; Borrello S; Galeotti T
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):173-81. PubMed ID: 10727416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of immature CD4-CD8+ thymocyte proliferation, but not differentiation, by the thymus atrophy-inducing compound di-n-butyltin dichloride.
    Pieters RH; Bol M; Ariëns T; Punt P; Seinen W; Bloksma N; Penninks AH
    Immunology; 1994 Feb; 81(2):261-7. PubMed ID: 8157274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD28 in thymocyte development and peripheral T cell activation in mice exposed to suspended particulate matter.
    Drela N; Ześko I; Jakubowska M; Biernacka M
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):179-88. PubMed ID: 16580703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus.
    Moon EY; Han YH; Lee DS; Han YM; Yu DY
    Eur J Immunol; 2004 Aug; 34(8):2119-28. PubMed ID: 15259009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel cell surface antigen, immature thymocyte antigen-1, is involved in the differentiation of murine thymocytes.
    Kishi H; Su DM; Muraguchi A; Watanabe T
    J Immunol; 1995 Jul; 155(2):568-77. PubMed ID: 7608536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.