These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 698203)

  • 1. Fluorotyrosine M13 coat protein: fluorine-19 nuclear magnetic resonance study of the motional properties of an integral membrane protein in phospholipid vesicles.
    Hagen DS; Weiner JH; Sykes BD
    Biochemistry; 1978 Sep; 17(18):3860-6. PubMed ID: 698203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of solvent accessibility of the fluorotyrosyl residues of M13 coat protein in deoxycholate micelles and phospholipid vesicles.
    Hagen DS; Weiner JH; Sykes BD
    Biochemistry; 1979 May; 18(10):2007-12. PubMed ID: 435462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 19F nuclear magnetic resonance studies of the coat protein of bacteriophage M13 in synthetic phospholipid vesicles and deoxycholate micelles.
    Dettman HD; Weiner JH; Sykes BD
    Biophys J; 1982 Jan; 37(1):243-51. PubMed ID: 7055622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton NMR T1, T2, and T1 rho relaxation studies of native and reconstituted sarcoplasmic reticulum and phospholipid vesicles.
    Deese AJ; Dratz EA; Hymel L; Fleischer S
    Biophys J; 1982 Jan; 37(1):207-16. PubMed ID: 6459803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorine-19 nuclear magnetic resonance studies of lipid phase transitions in model and biological membranes.
    Gent MP; Ho C
    Biochemistry; 1978 Jul; 17(15):3023-38. PubMed ID: 359037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance line-shape analysis of fluorine-19-labeled phospholipids.
    Engelsberg M; Dowd SR; Simplaceanu V; Cook BW; Ho C
    Biochemistry; 1982 Dec; 21(26):6985-9. PubMed ID: 6897614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane protein conformational change dependent on the hydrophobic environment.
    Wilson ML; Dahlquist FW
    Biochemistry; 1985 Apr; 24(8):1920-8. PubMed ID: 3893541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein.
    Henry GD; Sykes BD
    Biochemistry; 1990 Jul; 29(26):6303-13. PubMed ID: 2207075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior.
    Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G
    Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of nuclear magnetic resonance spectroscopy to the study of natural and model membranes.
    Podo F
    Biochimie; 1975; 57(4):461-9. PubMed ID: 1096970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR of spin-labeled bacteriophage M13 coat protein in mixed phospholipid bilayers.
    de Jongh HH; Hemminga MA; Marsh D
    Biochim Biophys Acta; 1990 May; 1024(1):82-8. PubMed ID: 2159806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles.
    Tauskela JS; Thompson M
    Biochim Biophys Acta; 1992 Feb; 1104(1):137-46. PubMed ID: 1550841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric orientation of phage M13 coat protein in Escherichia coli cytoplasmic membranes and in synthetic lipid vesicles.
    Wickner W
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1159-63. PubMed ID: 772680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments.
    Petersen NO; Chan SI
    Biochemistry; 1977 Jun; 16(12):2657-67. PubMed ID: 889782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of the major coat protein of fd bacteriophage with phospholipid vesicles.
    Chamberlain BK; Nozaki Y; Tanford C; Webster RE
    Biochim Biophys Acta; 1978 Jun; 510(1):18-37. PubMed ID: 667034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorine-19 nuclear magnetic resonance investigation of fluorine-19-labeled phospholipids. 1. A multiple-pulse study.
    Post JF; Cook BW; Dowd SR; Lowe IJ; Ho C
    Biochemistry; 1984 Dec; 23(25):6138-41. PubMed ID: 6525352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements.
    Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G
    Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorine-19 nuclear magnetic resonance studies of Escherichia coli membranes.
    Gent MP; Cottam PF; Ho C
    Proc Natl Acad Sci U S A; 1978 Feb; 75(2):630-4. PubMed ID: 345274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 19F NMR investigation of molecular motion and packing in sonicated phospholipid vesicles.
    Wu WG; Dowd SR; Simplaceanu V; Peng ZY; Ho C
    Biochemistry; 1985 Dec; 24(25):7153-61. PubMed ID: 4084571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.