These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 698203)

  • 41. Interaction of general anesthetics with phospholipid vesicles and biological membranes.
    Vanderkooi JM; Landesberg R; Selick H; McDonald GG
    Biochim Biophys Acta; 1977 Jan; 464(1):1-18. PubMed ID: 831785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of phage M13 coat protein and its assembly into membranes in vitro.
    Wickner W; Mandel G; Zwizinski C; Bates M; Killick T
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1754-8. PubMed ID: 273906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phospholipid bilayer surface configuration probed quantitatively by (31)P field-cycling NMR.
    Roberts MF; Redfield AG
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):17066-71. PubMed ID: 15569928
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein Rotational Dynamics in Aligned Lipid Membranes Probed by Anisotropic T
    Awosanya EO; Nevzorov AA
    Biophys J; 2018 Jan; 114(2):392-399. PubMed ID: 29401436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The in situ aggregational and conformational state of the major coat protein of bacteriophage M13 in phospholipid bilayers mimicking the inner membrane of host Escherichia coli.
    Spruijt RB; Hemminga MA
    Biochemistry; 1991 Nov; 30(46):11147-54. PubMed ID: 1932035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-resolved tryptophan fluorescence anisotropy investigation of bacteriophage M13 coat protein in micelles and mixed bilayers.
    Datema KP; Visser AJ; van Hoek A; Wolfs CJ; Spruijt RB; Hemminga MA
    Biochemistry; 1987 Sep; 26(19):6145-52. PubMed ID: 3318926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR of fd coat protein.
    Cross TA; Opella SJ
    J Supramol Struct; 1979; 11(2):139-45. PubMed ID: 44890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion.
    Wohlert J; Edholm O
    J Chem Phys; 2006 Nov; 125(20):204703. PubMed ID: 17144719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling.
    Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA
    Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of fluorinated ether anesthetics with artificial membranes.
    Koehler KA; Jain MK; Stone EE; Fossel ET; Koehler LS
    Biochim Biophys Acta; 1978 Jun; 510(1):177-85. PubMed ID: 27214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theory for nuclear magnetic relaxation of probes in anisotropic systems: application of cholesterol in phospholipid vesicles.
    Brainard JR; Szabo A
    Biochemistry; 1981 Aug; 20(16):4618-28. PubMed ID: 7197547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids.
    Stockton GW; Polnaszek CF; Tulloch AP; Hasan F; Smith IC
    Biochemistry; 1976 Mar; 15(5):954-66. PubMed ID: 943179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of various membrane physical-chemical properties on the aggregation kinetics of insulin.
    Grudzielanek S; Smirnovas V; Winter R
    Chem Phys Lipids; 2007; 149(1-2):28-39. PubMed ID: 17603032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy.
    Van Gorkom LC; Horváth LI; Hemminga MA; Sternberg B; Watts A
    Biochemistry; 1990 Apr; 29(16):3828-34. PubMed ID: 2354153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nuclear magnetic resonance studies of a model membrane protein (M13 coat protein) reconstituted in detergent micelles and phospholipid vesicles.
    Weiner JH; Dettman HD; Henry GD; O'Neil JD; Sykes BD
    Biochem Soc Trans; 1987 Feb; 15(1):81-5. PubMed ID: 3556744
    [No Abstract]   [Full Text] [Related]  

  • 56. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage.
    Bhattacharya S; Haldar S
    Biochim Biophys Acta; 2000 Jul; 1467(1):39-53. PubMed ID: 10930507
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alcohol interactions with lipids: a carbon-13 nuclear magnetic resonance study using butanol labeled at C-1.
    Rowe ES; Fernandes A; Khalifah RG
    Biochim Biophys Acta; 1987 Nov; 905(1):151-61. PubMed ID: 3676306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Constrained modeling of spin-labeled major coat protein mutants from M13 bacteriophage in a phospholipid bilayer.
    Bashtovyy D; Marsh D; Hemminga MA; Páli T
    Protein Sci; 2001 May; 10(5):979-87. PubMed ID: 11316878
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A.
    Smith R; Thomas DE; Separovic F; Atkins AR; Cornell BA
    Biophys J; 1989 Aug; 56(2):307-14. PubMed ID: 2476189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using fluorine nuclear magnetic resonance to probe the interaction of membrane-active peptides with the lipid bilayer.
    Buer BC; Chugh J; Al-Hashimi HM; Marsh EN
    Biochemistry; 2010 Jul; 49(27):5760-5. PubMed ID: 20527804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.