These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6982342)

  • 41. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance.
    Willumsen NJ; Larsen EH
    J Membr Biol; 1986; 94(2):173-90. PubMed ID: 3104597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microelectrode study of voltage-dependent Ba2+ and Cs+ block of apical K+ channels in the skin of Rana temporaria.
    Van Driessche W; De Wolf I
    Pflugers Arch; 1991 May; 418(4):400-7. PubMed ID: 1876484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.
    Essig A
    Biophys J; 1982 May; 38(2):143-52. PubMed ID: 6284264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of potassium conductance by barium in frog skin epithelium.
    Nagel W
    Biochim Biophys Acta; 1979 Apr; 552(2):346-57. PubMed ID: 312660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.
    Erlij D; Smith MW
    J Physiol; 1973 Jan; 228(1):221-39. PubMed ID: 4539864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-dependent effects of aldosterone on sodium transport and cell membrane resistances in rabbit distal colon.
    Hoffmann B; Clauss W
    Pflugers Arch; 1989 Nov; 415(2):156-64. PubMed ID: 2594472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonhormonal mechanisms for the regulation of transepithelial sodium transport: the roles of surface potential and cell calcium.
    Grinstein S; Candia O; Erlij D
    J Membr Biol; 1978; 40 Spec No():261-80. PubMed ID: 310469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microelectrode studies of the active Na transport pathway of frog skin.
    Helman SI; Fisher RS
    J Gen Physiol; 1977 May; 69(5):571-604. PubMed ID: 301179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion.
    Sørensen JB; Nielsen MS; Gudme CN; Larsen EH; Nielsen R
    Pflugers Arch; 2001 Apr; 442(1):1-11. PubMed ID: 11374055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time course of active Na transport and oxidative metabolism following transepithelial potential perturbation in toad urinary bladder.
    Rosenthal SJ; King JG; Essig A
    J Membr Biol; 1981; 63(3):157-63. PubMed ID: 7310855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transepithelial transport of sodium and chloride ions in isolated skin of the frog, Rana esculenta L.
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2002; 50(3-4):107-14. PubMed ID: 12729155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interactions of TPA and insulin on Na+ transport across frog skin.
    Civan MM; Peterson-Yantorno K; George K; O'Brien TG
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C569-78. PubMed ID: 2646943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dose dependence of glutaraldehyde-induced changes in the electrical properties of the amphibian skin.
    Margineanu DG; Van Driessche W
    Arch Int Physiol Biochim Biophys; 1991 Feb; 99(1):83-8. PubMed ID: 1713491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrophysiological analysis of sodium-transport in the colon of the frog (Rana esculenta). Modulation of apical membrane properties by antidiuretic hormone.
    Krattenmacher R; Clauss W
    Pflugers Arch; 1988 Jun; 411(6):606-12. PubMed ID: 2457866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder.
    Lewis SA; Butt AG; Bowler MJ; Leader JP; Macknight AD
    J Membr Biol; 1985; 83(1-2):119-37. PubMed ID: 3923196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual effect of barium on basolateral membrane conductance of frog skin.
    Granitzer M; Nagel W
    Pflugers Arch; 1990 Oct; 417(2):207-12. PubMed ID: 2084616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media.
    Rick R; Roloff C; Dörge A; Beck FX; Thurau K
    J Membr Biol; 1984; 78(2):129-45. PubMed ID: 6325700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current-voltage relations of the apical and basolateral membranes of the frog skin.
    Schoen HF; Erlij D
    J Gen Physiol; 1985 Aug; 86(2):257-87. PubMed ID: 3876406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nystatin studies of the skin of larval Rana catesbeiana.
    Cox TC; Alvarado RH
    Am J Physiol; 1983 Jan; 244(1):R58-65. PubMed ID: 6600375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.