These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6982342)

  • 61. Exchange diffusion, electrodiffusion and rectification in the chloride transport pathway of frog skin.
    Kristensen P
    J Membr Biol; 1983; 72(1-2):141-51. PubMed ID: 6602219
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stimulation of the sodium transport across the frog skin by three N-terminally extended arginine-vasopressins.
    Ponec J; Bakos P; Lichardus B; Alexandrová M; Lammek B; Rekowski P; Kupryszewski G
    Gen Physiol Biophys; 1990 Aug; 9(4):403-9. PubMed ID: 2272488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interference of a short-chain phospholipid with ion transport pathways in frog skin.
    Unmack MA; Frederiksen O; Willumsen NJ
    Pflugers Arch; 1997 Jul; 434(3):234-41. PubMed ID: 9178620
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Capacitative transients in voltage-clamped epithelia.
    Garcia-Diaz JF; Essig A
    Biophys J; 1985 Sep; 48(3):519-23. PubMed ID: 4041541
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Temperature dependence of transcellular and intracellular parameters of frog skin.
    Dinno MA; Nagel W
    Prog Clin Biol Res; 1988; 258():103-20. PubMed ID: 2454480
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nystatin as a probe for investigating the electrical properties of a tight epithelium.
    Lewis SA; Eaton DC; Clausen C; Diamond JM
    J Gen Physiol; 1977 Oct; 70(4):427-40. PubMed ID: 915470
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intracellular voltage of isolated epithelia of frog skin: apical and basolateral cell punctures.
    Fisher RS; Erlij D; Helman SI
    J Gen Physiol; 1980 Oct; 76(4):447-53. PubMed ID: 6969289
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Influence of lithium upon the intracellular potential of frog skin epithelium.
    Nagel W
    J Membr Biol; 1977 Dec; 37(3-4):347-59. PubMed ID: 304486
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.
    Ehrenfeld J; Garcia-Romeu F; Harvey BJ
    J Physiol; 1985 Feb; 359():331-55. PubMed ID: 2582114
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrophysiological study of luminal and basolateral vasopressin in rabbit cortical collecting duct.
    Naruse M; Yoshitomi K; Hanaoka K; Imai M; Kurokawa K
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F20-9. PubMed ID: 7840244
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of oxytocin on cation content and electrophysiology of frog skin epithelium.
    Schoen HF; Kaufman A; Erlij D
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C357-67. PubMed ID: 3262310
    [TBL] [Abstract][Full Text] [Related]  

  • 73. pH- and voltage-dependent conductances in toad skin.
    Lacaz-Vieira F
    J Membr Biol; 1995 Nov; 148(1):1-11. PubMed ID: 8558597
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Speed of voltage threshold shift after step-changes of (Na)o and (Ca)o at the outer surface of frog skin.
    Gebhardt U; Lindemann B
    Pflugers Arch; 1974 Feb; 347(1):9-18. PubMed ID: 4546246
    [No Abstract]   [Full Text] [Related]  

  • 75. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J; Bakos P; Lichardus B
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium.
    Harvey BJ; Ehrenfeld J
    J Gen Physiol; 1988 Dec; 92(6):793-810. PubMed ID: 3265145
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trapping of 134CS+ in frog skin epithelium as a function of short circuit current.
    Ussing HH; Lind F
    Kidney Int; 1996 Jun; 49(6):1568-9. PubMed ID: 8743456
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport.
    Rick R; Dörge A; Thurau K
    Soc Gen Physiol Ser; 1981; 36():197-208. PubMed ID: 6974404
    [No Abstract]   [Full Text] [Related]  

  • 79. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1984 Aug; 3(4):297-305. PubMed ID: 6094299
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Voltage dependence of the basolateral membrane conductance in the Amphiuma collecting tubule.
    Horisberger JD; Giebisch G
    J Membr Biol; 1988 Nov; 105(3):257-63. PubMed ID: 3221383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.