These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 6982680)

  • 1. Interaction of azthreonam and related monobactams with beta-lactamases from gram-negative bacteria.
    Bush K; Freudenberger JS; Sykes RB
    Antimicrob Agents Chemother; 1982 Sep; 22(3):414-20. PubMed ID: 6982680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of beta-lactamases from Enterobacter cloacae by monophosphams.
    Bush K; Smith SA; Tanaka SK; Bonner DP
    J Antimicrob Chemother; 1988 Dec; 22(6):801-9. PubMed ID: 3266620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro antibacterial activity and interactions with beta-lactamases and penicillin-binding proteins of the new monocarbam antibiotic U-78608.
    Zurenko GE; Truesdell SE; Yagi BH; Mourey RJ; Laborde AL
    Antimicrob Agents Chemother; 1990 May; 34(5):884-8. PubMed ID: 2193625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Ro 17-2301 (AMA-1080) with beta-lactamases.
    Then RL
    Chemotherapy; 1984; 30(6):398-407. PubMed ID: 6335074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria.
    Sykes RB; Bonner DP; Bush K; Georgopapadakou NH
    Antimicrob Agents Chemother; 1982 Jan; 21(1):85-92. PubMed ID: 6979307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity of tigemonam dicholate (SQ 30836) and interaction with beta-lactamases of gram-negative bacteria.
    Raimondi A; Cocuzza CE
    J Chemother; 1989 May; 1 Suppl 2():13-21. PubMed ID: 2809698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The antibiotic agent azthreonam: studies on plasmid-dependent resistance formation].
    Cullmann W; Stieglitz M
    Immun Infekt; 1983 Jan; 11(1):30-4. PubMed ID: 6341212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential hydrolysis of cis configuration compounds at the 3,4 position of monobactams by beta-lactamase from Morganella morganii.
    Matsuda K; Sanada M; Nakagawa S; Inoue M; Mitsuhashi S
    Antimicrob Agents Chemother; 1991 Mar; 35(3):458-61. PubMed ID: 2039196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial activity and beta-lactamase stability of foramidocillin.
    Mandell W; Neu HC
    Antimicrob Agents Chemother; 1986 May; 29(5):769-73. PubMed ID: 3488017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations on beta-lactamase stability of recently developed beta-lactam compounds: study of enzyme kinetics.
    Cullmann W; Dick W
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1983 May; 254(3):413-22. PubMed ID: 6372325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluations of U-76,252 (CS-807): antimicrobial spectrum, beta-lactamase stability, and enzyme inhibition.
    Jones RN; Barry AL
    Diagn Microbiol Infect Dis; 1987 Dec; 8(4):245-9. PubMed ID: 2856864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro activity and beta-lactamase stability of a monobactam, SQ 26,917, compared with those of aztreonam and other agents.
    Neu HC; Labthavikul P
    Antimicrob Agents Chemother; 1983 Aug; 24(2):227-32. PubMed ID: 6605715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of aztreonam as a substrate, inhibitor and inducer for beta-lactamases.
    Sakurai Y; Yoshida Y; Saitoh K; Nemoto M; Yamaguchi A; Sawai T
    J Antibiot (Tokyo); 1990 Apr; 43(4):403-10. PubMed ID: 2112533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SQ 26,180, a novel monobactam. I Taxonomy, fermentation and biological properties.
    Wells JS; Trejo WH; Principe PA; Bush K; Georgopapadakou N; Bonner DP; Sykes RB
    J Antibiot (Tokyo); 1982 Feb; 35(2):184-8. PubMed ID: 6978877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of BMY 28142 a new broad spectrum beta-lactamase stable cephalosporin.
    Neu HC; Chin NX; Jules K; Labthavikul P
    J Antimicrob Chemother; 1986 Apr; 17(4):441-52. PubMed ID: 3486862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relations of 4-fluoromethyl monobactams.
    Matsuda K; Nakagawa S; Nakano F; Inoue M; Mitsuhashi S
    J Antimicrob Chemother; 1987 Jun; 19(6):753-60. PubMed ID: 3497148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of beta-lactamases and enzyme kinetic studies on aztreonam.
    Zhao XJ; Li JT
    Chin Med J (Engl); 1992 May; 105(5):424-9. PubMed ID: 1499375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.
    Caselli E; Powers RA; Blasczcak LC; Wu CY; Prati F; Shoichet BK
    Chem Biol; 2001 Jan; 8(1):17-31. PubMed ID: 11182316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation of structural properties of beta-lactam antibiotics to antibacterial activity.
    Neu HC
    Am J Med; 1985 Aug; 79(2A):2-13. PubMed ID: 3895915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.