These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 6982680)

  • 21. In-vitro activity of tigemonam, an oral monobactam, against gram-negative rods, including variants in beta-lactamase-production.
    Brown J; Yang YJ; Livermore DM
    J Antimicrob Chemother; 1989 Feb; 23(2):201-7. PubMed ID: 2785102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sch 29482: stability and inhibitory potency towards beta-lactamases from Gram-negative bacteria.
    Pechère JC; Letarte R; Guay R; Asselin C; Morin C
    J Antimicrob Chemother; 1982 Feb; 9 Suppl C():123-32. PubMed ID: 6977528
    [No Abstract]   [Full Text] [Related]  

  • 23. Biochemical characteristics of extended broad spectrum beta-lactamases.
    Bush K; Singer SB
    Infection; 1989; 17(6):429-33. PubMed ID: 2613337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and physical studies of beta-lactamase inhibition by a novel penem, BRL 42715.
    Farmer TH; Page JW; Payne DJ; Knowles DJ
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):825-30. PubMed ID: 7980451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The in-vitro activity and beta-lactamase stability of carumonam.
    Neu HC; Chin NX; Labthavikul P
    J Antimicrob Chemother; 1986 Jul; 18(1):35-44. PubMed ID: 3531143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of formylamino- and methoxy-substituted beta-lactam antibiotics with beta-lactamases.
    Okonogi K; Sugiura A; Kuno M; Ono H; Harada S; Higashide E
    J Antibiot (Tokyo); 1985 Nov; 38(11):1555-63. PubMed ID: 3878359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99.
    Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF
    Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial activity of RU44790, a new N-tetrazolyl monocyclic beta-lactam.
    Chantot JF; Klich M; Teutsch G; Bryskier A; Collette P; Markus A; Seibert G
    Antimicrob Agents Chemother; 1992 Aug; 36(8):1756-63. PubMed ID: 1416860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aztreonam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use.
    Brogden RN; Heel RC
    Drugs; 1986 Feb; 31(2):96-130. PubMed ID: 3512234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Delhi Metallo-β-Lactamase 1 Catalyzes Avibactam and Aztreonam Hydrolysis.
    Lohans CT; Brem J; Schofield CJ
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28971873
    [No Abstract]   [Full Text] [Related]  

  • 31. In vitro antibacterial properties of T-5575 and T-5578 novel parenteral 2-carboxypenams.
    Watanabe Y; Minami S; Hayashi T; Araki H; Kitayama R; Ochiai H
    Antimicrob Agents Chemother; 1995 Dec; 39(12):2787-91. PubMed ID: 8593021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two new monobactam antibiotics produced by a Flexibacter sp. I. Taxonomy, fermentation, isolation and biological properties.
    Cooper R; Bush K; Principe PA; Trejo WH; Wells JS; Sykes RB
    J Antibiot (Tokyo); 1983 Oct; 36(10):1252-7. PubMed ID: 6643274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aztreonam: the first monobactam.
    Sykes RB; Bonner DP
    Am J Med; 1985 Feb; 78(2A):2-10. PubMed ID: 3871589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mechanism of enzymatic resistance to beta-lactam antibiotics].
    Philippon A; Paul G; Nevot P
    Presse Med; 1986 Dec; 15(46):2290-6. PubMed ID: 2949270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of beta-lactamases to bacterial resistance and mechanisms to inhibit beta-lactamases.
    Neu HC
    Am J Med; 1985 Nov; 79(5B):2-12. PubMed ID: 3907341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae.
    Bush K; Tanaka SK; Bonner DP; Sykes RB
    Antimicrob Agents Chemother; 1985 Apr; 27(4):555-60. PubMed ID: 3873900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical isolates of Escherichia coli producing TRI beta-lactamases: novel TEM-enzymes conferring resistance to beta-lactamase inhibitors.
    Vedel G; Belaaouaj A; Gilly L; Labia R; Philippon A; Névot P; Paul G
    J Antimicrob Chemother; 1992 Oct; 30(4):449-62. PubMed ID: 1490918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics.
    Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY
    Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro activity and beta-lactamase stability of a new penem, CGP 31608.
    Neu HC; Chin NX; Neu NM
    Antimicrob Agents Chemother; 1987 Apr; 31(4):558-69. PubMed ID: 3496845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ways to overcome cephalosporinase-mediated beta-lactam resistance in Enterobacter cloacae.
    Then RL; Angehrn P
    Chemioterapia; 1985 Feb; 4(1):83-9. PubMed ID: 3872727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.