These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 698289)

  • 1. Conformation of snake toxic polypeptides studied by a method of prediction and circular dichroism.
    Menez A; Langlet G; Tamiya N; Fromageot P
    Biochimie; 1978 Sep; 60(5):505-16. PubMed ID: 698289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular dichroic spectra of elapid cardiotoxins.
    Grognet JM; Ménez A; Drake A; Hayashi K; Morrison IE; Hider RC
    Eur J Biochem; 1988 Mar; 172(2):383-8. PubMed ID: 3350004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformation of cardiotoxins and neurotoxins from snake venoms.
    Visser L; Louw AI
    Biochim Biophys Acta; 1978 Mar; 533(1):80-9. PubMed ID: 638198
    [No Abstract]   [Full Text] [Related]  

  • 4. Conformational prediction for snake venom toxins and laser Raman scattering of a cardiotoxin from Taiwan cobra (Naja naja atra) venom.
    Hseu TH; Liu YC; Wang C; Chang H; Hwang DM; Yang CC
    Biochemistry; 1977 Jun; 16(13):2999-3006. PubMed ID: 560203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism of elapidae protein toxins.
    Drake AF; Dufton MJ; Hider RC
    Eur J Biochem; 1980 Apr; 105(3):623-30. PubMed ID: 7371648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversed-phase and hydrophobic-interaction high-performance liquid chromatography of elapid cardiotoxins.
    Osthoff G; Louw AI; Visser L
    Anal Biochem; 1987 Aug; 164(2):315-9. PubMed ID: 3674380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms.
    Dufton MJ; Hider RC
    CRC Crit Rev Biochem; 1983; 14(2):113-71. PubMed ID: 6340957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological cross-reactivity and neutralization of the principal toxins of Naja sumatrana and related cobra venoms by a Thai polyvalent antivenom (Neuro Polyvalent Snake Antivenom).
    Leong PK; Fung SY; Tan CH; Sim SM; Tan NH
    Acta Trop; 2015 Sep; 149():86-93. PubMed ID: 26026717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.
    Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B
    Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between the surface hydrophobicities and elution orders of elapid neurotoxins and cardiotoxins on hydrophobic-interaction high-performance liquid chromatography.
    Osthoff G; Louw AI; Reinecke CJ
    Toxicon; 1988; 26(5):475-83. PubMed ID: 3188053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins.
    Chen TS; Chung FY; Tjong SC; Goh KS; Huang WN; Chien KY; Wu PL; Lin HC; Chen CJ; Wu WG
    Biochemistry; 2005 May; 44(20):7414-26. PubMed ID: 15895985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 1H nuclear-magnetic-resonance spectra of Neurotoxin I and cardiotoxin Vii4 from Naja mossambica mossambica.
    Lauterwein J; Lazdunski M; Wüthrich K
    Eur J Biochem; 1978 Dec; 92(2):361-71. PubMed ID: 33043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability.
    Sivaraman T; Kumar TK; Tu YT; Peng HJ; Yu C
    Arch Biochem Biophys; 1999 Mar; 363(1):107-15. PubMed ID: 10049504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation of two homologous neurotoxins. Fluorescence and circular dichroism studies.
    Ménez A; Montenay-Garestier T; Fromageot P; Hélène C
    Biochemistry; 1980 Nov; 19(23):5202-8. PubMed ID: 7448163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational stability of a snake cardiotoxin.
    Hung MC; Chen YH
    Int J Pept Protein Res; 1977 Oct; 10(4):277-85. PubMed ID: 591177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of helical conformation in all beta-sheet proteins by trifluoroethanol.
    Arunkumar AI; Kumar TK; Jayaraman G; Samuel D; Yu C
    J Biomol Struct Dyn; 1996 Dec; 14(3):381-5. PubMed ID: 9016415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity.
    Kini RM; Evans HJ
    Biochemistry; 1989 Nov; 28(23):9209-15. PubMed ID: 2513886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular conformation of alpha-cobratoxin as studied by nuclear magnetic resonance and circular dichroism.
    Hider RC; Drake AF; Inagaki F; Williams RJ; Endo T; Miyazawa T
    J Mol Biol; 1982 Jun; 158(2):275-91. PubMed ID: 7120412
    [No Abstract]   [Full Text] [Related]  

  • 19. Circular dichroism study of the unfolding-refolding of a cardiotoxin from Taiwan cobra (Naja naja atra) venom.
    Gałat A; Yang CC; Blout ER
    Biochemistry; 1985 Sep; 24(20):5678-85. PubMed ID: 4074722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Far-u.v. CD-spectroscopy and immunological properties of synthetic sequential peptides derived from cardiotoxin VII1 of Naja nivea venom: an amphipathic alpha-helix formed by sequence 15-25 of a beta-protein.
    Osthoff G
    Int J Biochem; 1989; 21(12):1365-8. PubMed ID: 2482207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.