These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6983380)

  • 1. Changes in formaldehyde-induced fluorescence of the hypothalamus and pars intermedia in the frog, Rana temporaria, following background adaptation.
    Prasada Rao PD
    Brain Res Bull; 1982; 9(1-6):765-76. PubMed ID: 6983380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The topography of the caudal part of the paraventricular organ in Rana temporaria.
    Goossens N
    Cell Tissue Res; 1977 Mar; 178(3):421-6. PubMed ID: 300286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of somatostatin fibers in the median eminence and neural lobe of Rana temporaria.
    Dierickx K; Goossens N; Vandesande F
    Cell Tissue Res; 1981; 215(1):41-5. PubMed ID: 6112063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pituitary afferents originating in the paraventricular organ (PVO) of the goldfish hypothalamus.
    Fryer JN; Boudreault-Chateauvert C; Kirby RP
    J Comp Neurol; 1985 Dec; 242(4):475-84. PubMed ID: 4086672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of thyroid hormone on the development of peoptic-hypothalamic monoaminergic neurons in tadpoles of Bufo bufo japonicus.
    Kikuyama S; Miyakawa M; Arai Y
    Cell Tissue Res; 1979 Apr; 198(1):27-33. PubMed ID: 113102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoaminergic systems of the hypothalamus of ten amphibian species: a histofluorescence study.
    Lamas J; Rodicio C; Caruncho H; Anadon R
    J Hirnforsch; 1988; 29(3):289-97. PubMed ID: 3418115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cells of origin of the afferent fibers to the median eminence in the rat.
    Wiegand SJ; Price JL
    J Comp Neurol; 1980 Jul; 192(1):1-19. PubMed ID: 7410605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The monoaminergic system in the diencephalon of the newt tadpole, Triturus alpestris (Mert). A histofluorescence study.
    Corio M; Doerr-Schott J
    J Hirnforsch; 1988; 29(4):377-84. PubMed ID: 3183361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hypothalamic 'tuberoinfundibular' system of the rat as demonstrated by horseradish peroxidase (HRP) microiontophoresis.
    Lechan RM; Nestler JL; Jacobson S; Reichlin S
    Brain Res; 1980 Aug; 195(1):13-27. PubMed ID: 7397491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypothalamic neurosecretory system of the spotted owlet, Athene brama Temminck.
    Singh KB; Dominic CJ
    Acta Anat (Basel); 1976; 94(3):414-30. PubMed ID: 1032080
    [No Abstract]   [Full Text] [Related]  

  • 11. Distribution of NADPH-diaphorase activity in the hypothalamo-hypophysial system of the frog, Rana esculenta.
    Prasada Rao PD; Sato T; Ueck M
    Neurosci Lett; 1997 Oct; 235(1-2):61-4. PubMed ID: 9389596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropeptide cells and fibers in the hypothalamus and pituitary of the fetal sheep: comparison of oxytocin and arginine vasopressin.
    Hoffman GE; McDonald T; Figueroa JP; Nathanielsz PW
    Neuroendocrinology; 1989 Dec; 50(6):633-43. PubMed ID: 2515463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of catecholaminergic systems in the hypothalamus of two elasmobranch species, Raja undulata and Scyliorhinus canicula. A histofluorescence and immunohistochemical study.
    Molist P; Rodríguez-Moldes I; Anadón R
    Brain Behav Evol; 1993; 41(6):290-302. PubMed ID: 8100732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct septo-hypothalamic projections in the rat.
    Garris DR
    Neurosci Lett; 1979 Jun; 13(1):83-90. PubMed ID: 313542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endocrine hypothalamus: recent anatomical studies.
    Joseph SA; Knigge KM
    Res Publ Assoc Res Nerv Ment Dis; 1978; 56():15-47. PubMed ID: 622511
    [No Abstract]   [Full Text] [Related]  

  • 16. Immuno-enzyme cytochemical demonstration of mesotocinergic nerve fibres in the pars intermedia of the amphibian hypophysis.
    Dierickx K; Vandesande F
    Cell Tissue Res; 1976 Oct; 174(1):25-33. PubMed ID: 825229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the structural and phyletic origin of the aminergic nerves of the hypophysis of frog tadpoles (Rana temporaria) with special reference to pars distalis.
    Aronsson S; Enemar A
    J Comp Neurol; 1981 Aug; 200(3):315-21. PubMed ID: 6115867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholamines in the hypothalamus: an anatomical review.
    Palkovits M
    Neuroendocrinology; 1981 Aug; 33(2):123-8. PubMed ID: 6167889
    [No Abstract]   [Full Text] [Related]  

  • 19. Immunocytochemical distribution of catecholamine-synthesizing neurons in the hypothalamus and pituitary gland of pigs: tyrosine hydroxylase and dopamine-beta-hydroxylase.
    Leshin LS; Kraeling RR; Kineman RD; Barb CR; Rampacek GB
    J Comp Neurol; 1996 Jan; 364(1):151-68. PubMed ID: 8789282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of growth hormone releasing factor-like immunoreactivity in the hypothalamo-hypophyseal system of the frog (Rana temporaria) and the sea bass (Dicentrarchus labrax).
    Marivoet S; Moons L; Vandesande F
    Gen Comp Endocrinol; 1988 Oct; 72(1):72-9. PubMed ID: 3141244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.