These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 698361)

  • 1. [Electrical activity of motor unit action potentials following spinal cord injury].
    Beliaev VI
    Biull Eksp Biol Med; 1978 Sep; 86(9):267-70. PubMed ID: 698361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous electromyographic potentials in chronic spinal cord injured patients: relation to spasticity and length of nerve.
    Campbell JW; Herbison GJ; Chen YT; Jaweed MM; Gussner CG
    Arch Phys Med Rehabil; 1991 Jan; 72(1):23-7. PubMed ID: 1985619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodiagnostic changes of the lower limbs in subjects with chronic complete cervical spinal cord injury.
    Kirshblum S; Lim S; Garstang S; Millis S
    Arch Phys Med Rehabil; 2001 May; 82(5):604-7. PubMed ID: 11346835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Use of local electromyography for revealing conductivity along efferent pathways in patients with traumatic lesions of the spinal cord ].
    Beliaev VI
    Biull Eksp Biol Med; 1977 Jan; 83(1):13-5. PubMed ID: 851602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation.
    Alexeeva N; Broton JG; Suys S; Calancie B
    Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary changes in segmental neurons below a spinal cord lesion in man.
    Hunter J; Ashby P
    Arch Phys Med Rehabil; 1984 Nov; 65(11):702-5. PubMed ID: 6497617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electromyographic indices of lesion to the spinal cord following its trauma].
    Nesmeianova TN
    Biull Eksp Biol Med; 1975 Oct; 80(10):25-9. PubMed ID: 1227613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration in axial motoneuronal morphology in the spinal cord injured spastic rat.
    Kitzman P
    Exp Neurol; 2005 Mar; 192(1):100-8. PubMed ID: 15698623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrophysiologic assessment of the spastic syndrome in patients with a traumatic lesion of the spinal cord].
    Beliaev VI
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1988; 88(6):91-3. PubMed ID: 3188758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor unit firing during and after voluntary contractions of human thenar muscles weakened by spinal cord injury.
    Zijdewind I; Thomas CK
    J Neurophysiol; 2003 Apr; 89(4):2065-71. PubMed ID: 12612012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor unit discharge characteristics during voluntary contraction in patients with incomplete spinal cord injury.
    Smith HC; Davey NJ; Savic G; Maskill DW; Ellaway PH; Frankel HL
    Exp Physiol; 1999 Nov; 84(6):1151-60. PubMed ID: 10564711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures.
    Dietz V; Müller R
    Brain; 2004 Oct; 127(Pt 10):2221-31. PubMed ID: 15269117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal excitation of antagonistic muscles as a differentiating feature in spasticity.
    Myklebust BM; Gottlieb GL; Penn RD; Agarwal GC
    Ann Neurol; 1982 Oct; 12(4):367-74. PubMed ID: 7149662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral analysis of the electromyogram (EMG) in spinal cord trauma patients: II. Motor unit and interference EMG power spectra.
    Latash ML
    Electromyogr Clin Neurophysiol; 1988; 28(6):329-34. PubMed ID: 3248555
    [No Abstract]   [Full Text] [Related]  

  • 17. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal changes in spinal cord injured patients distal to the site of injury.
    Lin CS; Macefield VG; Elam M; Wallin BG; Engel S; Kiernan MC
    Brain; 2007 Apr; 130(Pt 4):985-94. PubMed ID: 17264094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.