BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 6983696)

  • 1. Elimination of medial prefrontal cortex self-stimulation following transection of efferents to the sulcal cortex in the rat.
    Corbett D; Laferriere A; Milner PM
    Physiol Behav; 1982 Sep; 29(3):425-31. PubMed ID: 6983696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine receptor sub-types involvement in nucleus accumbens and ventral tegmentum but not in medial prefrontal cortex: on self-stimulation of lateral hypothalamus and ventral mesencephalon.
    Singh J; Desiraju T; Raju TR
    Behav Brain Res; 1997 Jul; 86(2):171-9. PubMed ID: 9134152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal forebrain knife cuts and medial forebrain bundle self-stimulation.
    Waraczynski MA
    Brain Res; 1988 Jan; 438(1-2):8-22. PubMed ID: 3257893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Response of rat lateral hypothalamic neurons to food ingestion and repetitive stimulations at the self-stimulation sites].
    Sasaki K
    Fukuoka Igaku Zasshi; 1983 Sep; 74(9):600-15. PubMed ID: 6607201
    [No Abstract]   [Full Text] [Related]  

  • 5. Conditioned suppression of medial forebrain bundle and septal intracranial self-stimulation in the rat: evidence for a fear-relief mechanism of the septum.
    Grauer E; Thomas E
    J Comp Physiol Psychol; 1982 Feb; 96(1):61-70. PubMed ID: 6976981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry.
    Swerdlow NR; Koob GF
    Brain Res; 1987 Jun; 412(2):233-43. PubMed ID: 3607466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex.
    Phillips AG; Fibiger HC
    Can J Psychol; 1978 Jun; 32(2):58-66. PubMed ID: 737577
    [No Abstract]   [Full Text] [Related]  

  • 8. The effects of feeding and rewarding brain stimulation on lateral hypothalamic unit activity in freely moving rats.
    Sasaki K; Ono T; Muramoto K; Nishino H; Fukuda M
    Brain Res; 1984 Nov; 322(2):201-11. PubMed ID: 6150748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothalamic knife cuts that disrupt mating in male gerbils sever efferents and forebrain afferents of the sexually dimorphic area.
    Yahr P; Jacobsen CH
    Behav Neurosci; 1994 Aug; 108(4):735-42. PubMed ID: 7986367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cocaine enhances the reward value of medial prefrontal cortex self-stimulation.
    Corbett D
    Neuroreport; 1991 Dec; 2(12):805-8. PubMed ID: 1793827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased dopamine and serotonin metabolism in rat nucleus accumbens produced by intracranial self-stimulation of medial forebrain bundle as measured by in vivo microdialysis.
    Nakahara D; Ozaki N; Miura Y; Miura H; Nagatsu T
    Brain Res; 1989 Aug; 495(1):178-81. PubMed ID: 2476201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical self-stimulation deficits in the anterior and posterior parts of the medial forebrain bundle after ibotenic acid lesion of the middle lateral hypothalamus.
    Lestang I; Cardo B; Roy MT; Velley L
    Neuroscience; 1985 Jun; 15(2):379-88. PubMed ID: 3875058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses.
    Cossette MP; Conover K; Shizgal P
    Behav Brain Res; 2016 Jan; 297():345-58. PubMed ID: 26477378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical dissociation of the substrates of medial forebrain bundle self-stimulation and exploration.
    Durivage A; Miliaressis E
    Behav Neurosci; 1987 Feb; 101(1):57-61. PubMed ID: 3493788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced dopamine receptor activation in accumbens and frontal cortex has opposite effects on medial forebrain bundle self-stimulation.
    Olds ME
    Neuroscience; 1990; 35(2):313-25. PubMed ID: 2199840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of knife-cut lesions of the medial forebrain bundle in self-stimulating rats.
    Janas JD; Stellar JR
    Behav Neurosci; 1987 Dec; 101(6):832-45. PubMed ID: 3501293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lesions of various medial forebrain bundle components on lateral hypothalamic self-stimulation.
    Stiglick A; White N
    Brain Res; 1977 Sep; 133(1):45-63. PubMed ID: 302729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropharmacological and electrophysiological evidence implicating the mesolimbic dopamine system in feeding responses elicited by electrical stimulation of the medial forebrain bundle.
    Mogenson GJ; Wu M
    Brain Res; 1982 Dec; 253(1-2):243-51. PubMed ID: 6983903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitization to amphetamine and stress may involve nucleus accumbens and medial frontal cortex.
    Eichler AJ; Antelman SM
    Brain Res; 1979 Nov; 176(2):412-6. PubMed ID: 574049
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of the lateral cortico-cortical prefrontal pathway in self-stimulation of the medial prefrontal cortex in the rat.
    Cobo M; Ferrer JM; Mora F
    Behav Brain Res; 1989 Jan; 31(3):257-65. PubMed ID: 2914076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.