These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 6983889)
1. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-Sepharose: phosphate-mediated binding to an immobilized substrate analogue. Holzman TF; Baldwin TO Biochemistry; 1982 Nov; 21(24):6194-201. PubMed ID: 6983889 [TBL] [Abstract][Full Text] [Related]
2. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5'-phosphate site. Holzman TF; Baldwin TO Biochemistry; 1981 Sep; 20(19):5524-8. PubMed ID: 7295690 [TBL] [Abstract][Full Text] [Related]
3. Interaction between luciferases from various species of bioluminescent bacteria and the yellow fluorescent protein of Vibrio fischeri strain Y-1. Daubner SC; Baldwin TO Biochem Biophys Res Commun; 1989 Jun; 161(3):1191-8. PubMed ID: 2742584 [TBL] [Abstract][Full Text] [Related]
4. Affinity purification of bacterial luciferase and NAD(P)H:FMN oxidoreductases by FMN-sepharose for analytical applications. Lavi JT; Raunio RP; Stahlberg TH J Biolumin Chemilumin; 1990; 5(3):187-92. PubMed ID: 2220416 [TBL] [Abstract][Full Text] [Related]
5. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism. Meighen EA; Bartlet I J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding. Lei B; Cho KW; Tu SC J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897 [TBL] [Abstract][Full Text] [Related]
7. The effects of phosphate on the structure and stability of the luciferases from Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum. Holzman TF; Baldwin TO Biochem Biophys Res Commun; 1980 Jun; 94(4):1199-206. PubMed ID: 6967319 [No Abstract] [Full Text] [Related]
8. Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature. Holzman TF; Baldwin TO Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6363-7. PubMed ID: 6161366 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase. Wei CJ; Lei B; Tu SC Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297 [TBL] [Abstract][Full Text] [Related]
10. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase. Watanabe T; Matsui K; Kasai S; Nakamura T J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995 [TBL] [Abstract][Full Text] [Related]
11. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase. Jockers R; Ziegler T; Schmid RD J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412 [TBL] [Abstract][Full Text] [Related]
12. Activity and stability of the luciferase--flavin intermediate. Becvar JE; Tu SC; Hastings JW Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832 [TBL] [Abstract][Full Text] [Related]
14. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related]
15. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase. Moore C; Lei B; Tu SC Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975 [TBL] [Abstract][Full Text] [Related]
16. Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase. Low JC; Tu SC Photochem Photobiol; 2003 Apr; 77(4):446-52. PubMed ID: 12733657 [TBL] [Abstract][Full Text] [Related]
17. Separation of bacterial luciferase from oxidoreductases by affinity chromatography. Tsai TS Anal Biochem; 1985 Nov; 151(1):137-41. PubMed ID: 4091272 [TBL] [Abstract][Full Text] [Related]
18. [Isolation and purification of bacterial luciferase from Photobacterium fischeri for analytical purposes]. Shumikhin VN; Danilov VS; Malkov IuA; Egorov NS Biokhimiia; 1980 Sep; 45(9):1576-81. PubMed ID: 7248358 [TBL] [Abstract][Full Text] [Related]
19. Purification of bacterial luciferase by affinity methods. Baldwin TO; Holzman TF; Holzman RB; Riddle VA Methods Enzymol; 1986; 133():98-108. PubMed ID: 3821554 [No Abstract] [Full Text] [Related]
20. Specificities and properties of three reduced pyridine nucleotide-flavin mononucleotide reductases coupling to bacterial luciferase. Watanabe H; Hastings JW Mol Cell Biochem; 1982 May; 44(3):181-7. PubMed ID: 6981058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]