These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6984868)

  • 1. Intracellular measurement of Na activity using neutral carrier Na ion-selective microelectrode.
    Kajino K; Fujimoto M
    Jpn J Physiol; 1982; 32(6):997-1001. PubMed ID: 6984868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triple-barreled microelectrode for simultaneous measurements of intracellular Na+ and K+ activities and membrane potential in biological cells.
    Fujimoto M; Honda M
    Jpn J Physiol; 1980; 30(6):859-75. PubMed ID: 6973655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The measurement of intracellular sodium activities in the bullfrog by means of double-barreled sodium liquid ion-exchanger microelectrodes.
    Kotera K; Satake N; Honda M; Fujimoto M
    Membr Biochem; 1979; 2(3-4):323-38. PubMed ID: 42004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular calcium measurements with PVC-resin Ca-selective microelectrodes in frog proximal tubules and sartorius muscle fibers.
    Kubota T; Hagiwara N; Fujimoto M
    Jpn J Physiol; 1990; 40(1):79-95. PubMed ID: 2362385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical profile of K and Cl ions across the proximal tubule of bullfrog kidneys: a study using double-barreled ion-sensitive microelectrodes.
    Fujimoto M; Kubota T; Kotera K
    Contrib Nephrol; 1977; 6():114-23. PubMed ID: 300666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basolateral pH-sensitive K+ channels mediate membrane potential of proximal tubule cells in bullfrog kidney.
    Kubokawa M; Mori Y; Fujimoto K; Kubota T
    Jpn J Physiol; 1998 Feb; 48(1):1-8. PubMed ID: 9538283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical profile for ion transport across the membrane of proximal tubular cells.
    Fujimoto M; Naito K; Kubota T
    Membr Biochem; 1980; 3(1-2):67-97. PubMed ID: 6968864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cAMP on ion transport in the proximal tubular cells in bullfrog kidney.
    Fujimoto M; Hagiwara N; Kubota T; Kotera K
    Jpn J Physiol; 1988; 38(5):619-41. PubMed ID: 2851674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of intracellular pH of bullfrog skeletal muscle and renal tubular cells with double-barreled antimony microelectrodes.
    Matsumura Y; Kajino K; Fujimoto M
    Membr Biochem; 1980; 3(1-2):99-129. PubMed ID: 6968865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dopamine on the transport of Na, H, and Ca in the bullfrog proximal tubule.
    Hagiwara N; Kubota T; Kubokawa M; Fujimoto M
    Jpn J Physiol; 1990; 40(3):351-68. PubMed ID: 2177119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular ion activities in Necturus proximal tubule.
    Spring KR; Kimura G
    Fed Proc; 1979 Dec; 38(13):2729-32. PubMed ID: 510561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion.
    Cemerikić D; Wilcox CS; Giebisch G
    J Membr Biol; 1982; 69(2):159-65. PubMed ID: 7131537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between cytosolic activities of calcium and pH in frog proximal tubules.
    Fujimoto M; Kubota T; Hagiwara N; Kubokawa M; Ohno-Shosaku T; Kotera K
    Jpn J Physiol; 1990; 40(2):273-96. PubMed ID: 2395240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of diffusible ions on the peritubular membrane potential of proximal tubular cells in perfused bullfrog kidneys.
    Kubota T; Honda M; Kotera K; Fujimoto M
    Jpn J Physiol; 1980; 30(5):775-90. PubMed ID: 6970293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium permeability of luminal and peritubular membranes in the proximal tubule of bullfrog kidneys.
    Kubokawa M; Kubota T; Fujimoto M
    Jpn J Physiol; 1990; 40(5):613-34. PubMed ID: 2086984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ; Gamiño SM; Giraldez F; González-Serratos H
    J Physiol; 1986 Sep; 378():461-83. PubMed ID: 2432253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular potassium activity in mammalian proximal tubule: effect of perturbations in transepithelial sodium transport.
    Laprade R; Lapointe JY; Breton S; Duplain M; Cardinal J
    J Membr Biol; 1991 May; 121(3):249-59. PubMed ID: 1865489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: interactions between magnesium and sodium in the regulation of [Mg]i.
    Blatter LA
    Pflugers Arch; 1990 May; 416(3):238-46. PubMed ID: 2381762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutral carrier Na+- and Ca2+-selective microelectrodes for intracellular application.
    Dagostino M; Lee CO
    Biophys J; 1982 Dec; 40(3):199-207. PubMed ID: 7183334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extra- and intracellular hydrogen ion-selective microelectrode based on neutral carriers with extended pH response range in acid media.
    Chao P; Ammann D; Oesch U; Simon W; Lang F
    Pflugers Arch; 1988 Feb; 411(2):216-9. PubMed ID: 3357760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.