These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 698512)
21. Optimizing normal tissue sparing in ion therapy using calculated isoeffective dose for ion selection. Remmes NB; Herman MG; Kruse JJ Int J Radiat Oncol Biol Phys; 2012 Jun; 83(2):756-62. PubMed ID: 22436796 [TBL] [Abstract][Full Text] [Related]
22. The radiobiological and physical basis for radiotherapy with protons and heavier ions. Kraft G Strahlenther Onkol; 1990 Jan; 166(1):10-3. PubMed ID: 2154042 [TBL] [Abstract][Full Text] [Related]
23. [Heavy charged particles radiotherapy--mainly carbon ion beams]. Yanagi T; Tsuji H; Tsujii H Gan To Kagaku Ryoho; 2003 Dec; 30(13):2036-42. PubMed ID: 14712762 [TBL] [Abstract][Full Text] [Related]
24. Physical advantages of particles: protons and light ions. Jäkel O Br J Radiol; 2020 Mar; 93(1107):20190428. PubMed ID: 31556333 [TBL] [Abstract][Full Text] [Related]
25. Basics of particle therapy II biologic and dosimetric aspects of clinical hadron therapy. Rong Y; Welsh J Am J Clin Oncol; 2010 Dec; 33(6):646-9. PubMed ID: 20395789 [TBL] [Abstract][Full Text] [Related]
26. ESR investigation of sucrose radicals produced by particle irradiation. Nakagawa K; Sato Y Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1315-8. PubMed ID: 15134729 [TBL] [Abstract][Full Text] [Related]
27. Developing aspects of radiation oncology. Fowler JF Med Phys; 1981; 8(4):427-34. PubMed ID: 6798395 [TBL] [Abstract][Full Text] [Related]
28. A review of high LET facilities, existing and projected, with emphasis on the radiobiologic aspects. Hall EJ J Can Assoc Radiol; 1975 Mar; 26(1):3-14. PubMed ID: 806598 [TBL] [Abstract][Full Text] [Related]
29. Radiobiology of heavy particle radiation therapy: cellular studies. Hall EJ Radiology; 1973 Jul; 108(1):119-29. PubMed ID: 4196726 [No Abstract] [Full Text] [Related]
30. Failla Memorial lecture. The future of heavy-ion science in biology and medicine. Tobias CA Radiat Res; 1985 Jul; 103(1):1-33. PubMed ID: 3906741 [TBL] [Abstract][Full Text] [Related]
31. Dosimetry and instrumentation for helium and heavy ions. Lyman JT; Howard J Int J Radiat Oncol Biol Phys; 1977; 3():81-5. PubMed ID: 96082 [No Abstract] [Full Text] [Related]
32. Radiation chemistry of high-energy carbon, neon, and argon ions: hydrated electron yields. Appleby A; Christman EA; Jayko M Radiat Res; 1986 Jun; 106(3):300-6. PubMed ID: 3714976 [TBL] [Abstract][Full Text] [Related]
33. [Physical and dosimetric bases of therapy using densely ionized particles and fast neutrons]. Lorenz WJ; Höver KH Strahlentherapie; 1974 Nov; 148(5):497-501. PubMed ID: 4216992 [No Abstract] [Full Text] [Related]
34. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit. Pshenichnov I; Mishustin I; Greiner W Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647 [TBL] [Abstract][Full Text] [Related]
35. [Possibilities and prospects of radiotherapy using densely ionized particles and neutrons]. Scheer KE Strahlentherapie; 1974 Nov; 148(5):440-6. PubMed ID: 4216988 [No Abstract] [Full Text] [Related]
36. Heavy charged particle radiotherapy. Chen GT; Castro JR; Quivey JM Annu Rev Biophys Bioeng; 1981; 10():499-529. PubMed ID: 7020583 [No Abstract] [Full Text] [Related]
37. Relationship between linear energy transfer and behavioral toxicity in rats following exposure to protons and heavy particles. Rabin BM; Hunt WA; Joseph JA; Dalton TK; Kandasamy SB Radiat Res; 1991 Nov; 128(2):216-21. PubMed ID: 1658847 [TBL] [Abstract][Full Text] [Related]