BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6985571)

  • 1. Triggering of lymphocyte capping appears not to require changes in potential or ion fluxes across the plasma membrane.
    Montecucco C; Rink TJ; Pozzan T; Metcalfe JC
    Biochim Biophys Acta; 1980; 595(1):65-70. PubMed ID: 6985571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphocyte membrane potential assessed with fluorescent probes.
    Rink TJ; Montecucco C; Hesketh TR; Tsien RY
    Biochim Biophys Acta; 1980; 595(1):15-30. PubMed ID: 6153065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular 45Ca2+ in B lymphocytes.
    Braun J; Sha'afi RI; Unanue ER
    J Cell Biol; 1979 Sep; 82(3):755-66. PubMed ID: 315942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes.
    Pozzan T; Arslan P; Tsien RY; Rink TJ
    J Cell Biol; 1982 Aug; 94(2):335-40. PubMed ID: 6809769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commitment to differentiation of murine erythroleukemia cells involves a modulated plasma membrane depolarization through Ca2+-activated K+ channels.
    Arcangeli A; Ricupero L; Olivotto M
    J Cell Physiol; 1987 Sep; 132(3):387-400. PubMed ID: 2443510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical measurements of Na-Ca-K exchange currents in intact outer segments isolated from bovine retinal rods.
    Schnetkamp PP
    J Gen Physiol; 1991 Sep; 98(3):555-73. PubMed ID: 1722239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. II. Contrasting effects of local anesthetics and a calcium ionophore.
    Braun J; Fujiwara K; Pollard TD; Unanue ER
    J Cell Biol; 1978 Nov; 79(2 Pt 1):419-26. PubMed ID: 363728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-induced heterogeneous changes in membrane potential detected by flow cytofluorimetry.
    Hickman JA; Blair OC; Stepanowski AL; Sartorelli AC
    Biochim Biophys Acta; 1984 Dec; 778(3):457-62. PubMed ID: 6439247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels.
    Pozzan T; Corps AN; Montecucco C; Hesketh TR; Metcalfe JC
    Biochim Biophys Acta; 1980 Nov; 602(3):558-66. PubMed ID: 6776985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing extracellular potassium causes calcium-dependent shape change and facilitates concanavalin A capping in human neutrophils.
    Roberts RL; Mounessa NL; Gallin JI
    J Immunol; 1984 Apr; 132(4):2000-6. PubMed ID: 6699404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of fluorescent probe to monitor alterations in trans-membrane potential in single cell suspensions.
    Bramhall JS; Morgan JI; Perris AD; Britten AZ
    Biochem Biophys Res Commun; 1976 Sep; 72(2):654-62. PubMed ID: 825119
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of lymphocyte capping and transformation by propranolol and related compounds.
    Anderton BH; Axford JS; Cohn P; Marshall NJ; Shen L; Sprake S
    Br J Pharmacol; 1981 Jan; 72(1):69-74. PubMed ID: 6112036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of valinomycin on lymphocytes independent of potassium permeability.
    Negendank W; Shaller C
    Biochim Biophys Acta; 1982 Jun; 688(2):316-22. PubMed ID: 7104325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-capping of ras proteins with surface immunoglobulins in B lymphocytes.
    Graziadei L; Riabowol K; Bar-Sagi D
    Nature; 1990 Sep; 347(6291):396-400. PubMed ID: 2120590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plasma membrane potential of human neutrophils. Role of ion channels and the sodium/potassium pump.
    Majander A; Wikström M
    Biochim Biophys Acta; 1989 Apr; 980(2):139-45. PubMed ID: 2539191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of ionophore A23187 and concanavalin A on the membrane potential of human peripheral blood lymphocytes and rat thymocytes.
    Gukovskaya AS; Zinchenko VP
    Biochim Biophys Acta; 1985 May; 815(3):433-40. PubMed ID: 3922416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.