These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6985890)

  • 1. Synthesis of ribosomal protein S1 following nutritional shift-up in Escherichia coli K-12.
    Adachi K; Boyle SM; Sells BH
    J Biol Chem; 1980 Jan; 255(2):357-60. PubMed ID: 6985890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein synthesis during a nutritional shift-up in Escherichia coli.
    Sells BH; Boyle SM; Carpenter G
    Biochem Biophys Res Commun; 1975 Nov; 67(1):203-11. PubMed ID: 1106407
    [No Abstract]   [Full Text] [Related]  

  • 3. On the control of ribosomal protein biosynthesis in Escherichia coli. II. Studies during recovery from amino acid starvation.
    Marvaldi J; Pichon J; Coeroli C; Marchis-Mouren G
    Biochim Biophys Acta; 1977 Mar; 475(2):228-40. PubMed ID: 321027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of ribosome synthesis during a nutritional shift-up in Escherischia coli K-12.
    Champney WS
    Mol Gen Genet; 1977 Apr; 152(3):259-66. PubMed ID: 327281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli.
    Friesen JD; Fiil NP; von Meyenburg K
    J Biol Chem; 1975 Jan; 250(1):304-9. PubMed ID: 1095568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetate kinase production by Escherichia coli during steady-state and transient growth in continuous culture.
    Koplove HM; Cooney CL
    J Bacteriol; 1978 Jun; 134(3):992-1001. PubMed ID: 207678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of polypeptide chain initiation factors during a nutritional shift-up in Escherichia coli.
    Boyle SM; Sells BH
    Biochem Biophys Res Commun; 1974 Mar; 57(1):23-30. PubMed ID: 4597408
    [No Abstract]   [Full Text] [Related]  

  • 8. On the control of ribosomal protein biosynthesis in Escherichia coli. I. Studies on ribosomal protein biosynthesis in amino acid-starved cells.
    Pichon J; Marvaldi J; Coeroli C; Cozzone A; Marchis-Mouren G
    Biochim Biophys Acta; 1977 Mar; 475(2):217-27. PubMed ID: 321026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational regulation is responsible for growth-rate-dependent and stringent control of the synthesis of ribosomal proteins L11 and L1 in Escherichia coli.
    Cole JR; Nomura M
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4129-33. PubMed ID: 3520566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.
    Burgos HL; O'Connor K; Sanchez-Vazquez P; Gourse RL
    J Bacteriol; 2017 Nov; 199(21):. PubMed ID: 28784818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-dependent in vitro synthesis of Escherichia coli ribosomal protein S20 and isoleucyl-tRNA synthetase. Effect of guanosine-5'-diphosphate-3'-diphosphate.
    Wirth R; Buckel P; Böck A
    FEBS Lett; 1977 Nov; 83(1):103-6. PubMed ID: 336397
    [No Abstract]   [Full Text] [Related]  

  • 12. Ribosomal protein S1 of Escherichia coli is the effector for the regulation of its own synthesis.
    Skouv J; Schnier J; Rasmussen MD; Subramanian AR; Pedersen S
    J Biol Chem; 1990 Oct; 265(28):17044-9. PubMed ID: 2120211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine stimulation of ribosomal synthesis and activity in a polyamine-dependent mutant of Escherichia coli.
    Kashiwagi K; Sakai Y; Igarashi K
    Arch Biochem Biophys; 1989 Jan; 268(1):379-87. PubMed ID: 2643387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic regulation of beta-galactosidase synthesis in Escherichia coli. A test for constitutive ribosome synthesis.
    Dalbow DG; Bremer H
    Biochem J; 1975 Jul; 150(1):1-8. PubMed ID: 173297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition period following a nutritional shift-up in the bacterium Escherichia coli B/r: stable RNA and protein synthesis.
    Bremer H; Dennis PP
    J Theor Biol; 1975 Aug; 52(2):365-82. PubMed ID: 1105007
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on ribosomal protein biosynthesis in an RNA polymerase temperature sensitive E. coli mutant.
    Pichon JL; Coeroli C; Marchis-Mouren G
    Mol Gen Genet; 1977 Feb; 150(3):257-64. PubMed ID: 321934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of messenger RNA coding for elongation factors G and Ts during nutritional shift-up in Escherichia coli K-12.
    Barnsley PG; Boyle SM; Sells BH
    Biochem Biophys Res Commun; 1976 Aug; 71(3):817-25. PubMed ID: 786293
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli.
    Murray KD; Bremer H
    J Mol Biol; 1996 May; 259(1):41-57. PubMed ID: 8648647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo.
    Sørensen MA; Fricke J; Pedersen S
    J Mol Biol; 1998 Jul; 280(4):561-9. PubMed ID: 9677288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between the spoT gene, the synthesis of stable RNA, ribosomal proteins, and the beta beta' subunits of RNA polymerase following a nutritional shiftup of Escherichia coli.
    Boyle SM; Chu F; Brot N; Sells BH
    Can J Biochem; 1978 Jun; 56(6):528-33. PubMed ID: 352488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.