These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6986865)

  • 61. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.
    Gas-Pascual E; Berna A; Bach TJ; Schaller H
    PLoS One; 2014; 9(10):e109156. PubMed ID: 25343375
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic analysis of mitochondrial resistance to tetracycline in Saccharomyces cerevisiae.
    Hughes AR; Wilkie D
    Heredity (Edinb); 1972 Feb; 28(1):117-27. PubMed ID: 4554286
    [No Abstract]   [Full Text] [Related]  

  • 63. Involvement of cytochrome P-450 and a cyanide-sensitive enzyme in different steps of lanosterol demethylation by yeast microsomes.
    Ohba M; Sato R; Yoshida Y; Nishino T; Katsuki H
    Biochem Biophys Res Commun; 1978 Nov; 85(1):21-7. PubMed ID: 369554
    [No Abstract]   [Full Text] [Related]  

  • 64. The 14alpha-demethylation of lanosterol by a reconstituted cytochrome P-450 system from yeast microsomes.
    Aoyama Y; Yoshida Y
    Biochem Biophys Res Commun; 1978 Nov; 85(1):28-34. PubMed ID: 105731
    [No Abstract]   [Full Text] [Related]  

  • 65. Energetics of yeast growth under different intensities of aeration.
    Oura E
    Biotechnol Bioeng Symp; 1973; 0(4-1):117-27. PubMed ID: 4606515
    [No Abstract]   [Full Text] [Related]  

  • 66. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole.
    Kuchta T; Bartková K; Kubinec R
    Biochem Biophys Res Commun; 1992 Nov; 189(1):85-91. PubMed ID: 1449509
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification and properties of a sterol-binding polysaccharide isolated from Saccharomyces cerevisiae.
    Thompson ED; Knights BA; Parks LW
    Biochim Biophys Acta; 1973 Mar; 304(1):132-41. PubMed ID: 4573201
    [No Abstract]   [Full Text] [Related]  

  • 68. Enzymic modification of cyclopropane sterols in yeast cell-free system.
    Anding C; Parks LW; Ourisson G
    Eur J Biochem; 1974 Apr; 43(3):459-63. PubMed ID: 4598751
    [No Abstract]   [Full Text] [Related]  

  • 69. Manipulation by tridemorph, a systemic fungicide, of the sterol composition of maize leaves and roots.
    Bladocha M; Benveniste P
    Plant Physiol; 1983 Apr; 71(4):756-62. PubMed ID: 16662902
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dual roles for cholesterol in mammalian cells.
    Xu F; Rychnovsky SD; Belani JD; Hobbs HH; Cohen JC; Rawson RB
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14551-6. PubMed ID: 16199524
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme.
    Gachotte D; Pierson CA; Lees ND; Barbuch R; Koegel C; Bard M
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11173-8. PubMed ID: 9326581
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phospholipid synthesis in S. cerevisiae strain GL7 grown without unsaturated fatty acid supplements.
    Buttke TM; Reynolds R; Pyle AL
    Lipids; 1982 May; 17(5):361-6. PubMed ID: 7047968
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of sterol side chains on growth and membrane fatty acid composition of Saccharomyces cerevisiae.
    Buttke TM; Jones SD; Bloch K
    J Bacteriol; 1980 Oct; 144(1):124-30. PubMed ID: 6774959
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Relationship between antifungal activity and inhibition of sterol biosynthesis in miconazole, clotrimazole, and 15-azasterol.
    Taylor FR; Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1983 Apr; 23(4):515-21. PubMed ID: 6344784
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sterol synergism in yeast.
    Ramgopal M; Bloch K
    Proc Natl Acad Sci U S A; 1983 Feb; 80(3):712-5. PubMed ID: 6338497
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae.
    Lorenz RT; Casey WM; Parks LW
    J Bacteriol; 1989 Nov; 171(11):6169-73. PubMed ID: 2681155
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae.
    Lorenz RT; Parks LW
    Lipids; 1991 Aug; 26(8):598-603. PubMed ID: 1779707
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative responses of the yeast mutant strain GL7 to lanosterol, cycloartenol, and cyclolaudenol.
    Buttke TM; Bloch K
    Biochem Biophys Res Commun; 1980 Jan; 92(1):229-36. PubMed ID: 6986865
    [No Abstract]   [Full Text] [Related]  

  • 79. Effects of cycloartenol and lanosterol on artificial and natural membranes.
    Dahl CE; Dahl JS; Bloch K
    Biochem Biophys Res Commun; 1980 Jan; 92(1):221-8. PubMed ID: 7356454
    [No Abstract]   [Full Text] [Related]  

  • 80. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes.
    Sawai S; Akashi T; Sakurai N; Suzuki H; Shibata D; Ayabe S; Aoki T
    Plant Cell Physiol; 2006 May; 47(5):673-7. PubMed ID: 16531457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.