These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 6986914)
1. A study of substrate specificity of mammalian and bacterial DNA polymerases with 5-alkyl-2'-deoxyuridine 5'-triphosphates. Sági J; Nowak R; Zmudzka B; Szemzö A; Otvös L Biochim Biophys Acta; 1980 Feb; 606(2):196-201. PubMed ID: 6986914 [TBL] [Abstract][Full Text] [Related]
2. Utilization in vitro of deoxyuridine triphosphate in DNA synthesis by DNA polymerases alpha and beta from calf thymus. Yoshida S; Masaki S Biochim Biophys Acta; 1979 Feb; 561(2):396-402. PubMed ID: 427163 [TBL] [Abstract][Full Text] [Related]
3. Differential incorporation of thymidylate analogues into DNA by DNA polymerase alpha and by DNA polymerases specified by two herpes simplex viruses. Kowalzick L; Gauri KK; Spadari S; Pedrali-Noy G; Kühne J; Koch G J Gen Virol; 1982 Sep; 62 (Pt 1)():29-38. PubMed ID: 6290594 [TBL] [Abstract][Full Text] [Related]
4. Substrate specificity of DNA polymerases. I. Enzyme-catalysed incorporation of 5-'1-alkenyl)-2'-deoxyuridines into DNA. Otvös L; Sági J; Kovács T; Walker RT Nucleic Acids Res; 1987 Feb; 15(4):1763-77. PubMed ID: 3822838 [TBL] [Abstract][Full Text] [Related]
5. (E)-5-(2-bromovinyl)-2'-deoxyuridine-5'-triphosphate as a DNA polymerase substrate. Sági J; Szabolcs A; Szemzö A; Otvös L Nucleic Acids Res; 1981 Dec; 9(24):6985-94. PubMed ID: 7335497 [TBL] [Abstract][Full Text] [Related]
6. Utilization of 5-fluoro-2'-deoxyuridine triphosphate and 5-fluoro-2'-deoxycytidine triphosphate in DNA synthesis by DNA polymerases alpha and beta from calf thymus. Tanaka M; Yoshida S; Saneyoshi M; Yamaguchi T Cancer Res; 1981 Oct; 41(10):4132-5. PubMed ID: 7285016 [TBL] [Abstract][Full Text] [Related]
7. O4-Methyl-, O4-ethyl-, and O4-isopropylthymidine 5'-triphosphates as analogues of thymidine 5'-triphosphate: kinetics of incorporation by Escherichia coli DNA polymerase I. Singer B; Chavez F; Spengler SJ Biochemistry; 1986 Mar; 25(6):1201-5. PubMed ID: 3516216 [TBL] [Abstract][Full Text] [Related]
8. Modified polynucleotides. I. Investigation of the enzymatic polymerization of 5-alkyl-dUTP-s. Sági JT; Szabolcs A; Szemzö A; Otvös L Nucleic Acids Res; 1977 Aug; 4(8):2767-77. PubMed ID: 333394 [TBL] [Abstract][Full Text] [Related]
9. Nonrandom substitution of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Pless RC; Levitt LM; Bessman MJ Biochemistry; 1981 Oct; 20(21):6235-44. PubMed ID: 7030386 [TBL] [Abstract][Full Text] [Related]
10. Reactions of calf thymus DNA polymerases alpha and beta with native DNA damaged by thymine starvation or by methyl methanesulphonate treatment with Escherichia coli cells. Sołtyk A; Siedlecki JA; Pietrzykowska I; Zmudzka B FEBS Lett; 1981 Mar; 125(2):227-30. PubMed ID: 7014256 [No Abstract] [Full Text] [Related]
11. The influence of a double-stranded hindrance on DNA synthesis performed by DNA polymerase alpha, T4 DNA polymerase, DNA polymerase I (Klenow fragment) and AMV reverse transcriptase. Scamrov AV; Beabealashvilli RS FEBS Lett; 1988 Feb; 228(1):144-8. PubMed ID: 2449362 [TBL] [Abstract][Full Text] [Related]
12. Differential inhibition of mammalian DNA polymerases by X-irradiated DNA. Nakamura H; Morita T; Yoshida S Int J Radiat Biol Relat Stud Phys Chem Med; 1980 Oct; 38(4):449-58. PubMed ID: 7002827 [TBL] [Abstract][Full Text] [Related]
13. Substrate specificity of DNA polymerases. II. 5-(1-Alkynyl)-dUTPs as substrates of the Klenow DNA polymerase enzyme. Otvös L; Szécsi J; Sági J; Kovács T Nucleic Acids Symp Ser; 1987; (18):125-9. PubMed ID: 3697112 [TBL] [Abstract][Full Text] [Related]
15. Oligothymidylate analogues having stereoregular, alternating methylphosphonate/phosphodiester backbones as primers for DNA polymerase. Miller PS; Annan ND; McParland KB; Pulford SM Biochemistry; 1982 May; 21(10):2507-12. PubMed ID: 7046789 [TBL] [Abstract][Full Text] [Related]
16. Substrate and mispairing properties of 5-formyl-2'-deoxyuridine 5'-triphosphate assessed by in vitro DNA polymerase reactions. Yoshida M; Makino K; Morita H; Terato H; Ohyama Y; Ide H Nucleic Acids Res; 1997 Apr; 25(8):1570-7. PubMed ID: 9092664 [TBL] [Abstract][Full Text] [Related]
17. Chiral discrimination of enantiomeric 2'-deoxythymidine 5'-triphosphate by HIV-1 reverse transcriptase and eukaryotic DNA polymerases. Yamaguchi T; Iwanami N; Shudo K; Saneyoshi M Biochem Biophys Res Commun; 1994 Apr; 200(2):1023-7. PubMed ID: 7513992 [TBL] [Abstract][Full Text] [Related]
18. Evidence implying DNA polymerase beta function in excision repair. Siedlecki JA; Szyszko J; Pietrzykowska I; Zmudzka B Nucleic Acids Res; 1980 Jan; 8(2):361-75. PubMed ID: 6252546 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of calf thymus DNA polymerase alpha and of normal and cancer cell growth by butylanilinouracil and butylphenylguanine. Rochowska M; Siedlecki J; Skurzak H; Wright G; Zmudzka B Biochim Biophys Acta; 1982 Oct; 699(1):67-73. PubMed ID: 6756479 [TBL] [Abstract][Full Text] [Related]
20. Carbocyclic analogues of dTTP and UTP: properties in polymerase enzyme-catalyzed reactions. Sági J; Szécsi J; Szemzó A; Sági G; Otvös L Nucleic Acids Symp Ser; 1987; (18):131-5. PubMed ID: 3320975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]