These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6987070)

  • 1. A spiral array of microtubules in the fertilized sea urchin egg cortex examined by indirect immunofluorescence and electron microscopy.
    Harris P; Osborn M; Weber K
    Exp Cell Res; 1980 Mar; 126(1):227-36. PubMed ID: 6987070
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage.
    Harris P; Osborn M; Weber K
    J Cell Biol; 1980 Mar; 84(3):668-79. PubMed ID: 6987246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. II. Bipolarization before the first mitosis.
    Paweletz N; Mazia D; Finze EM
    Eur J Cell Biol; 1987 Oct; 44(2):205-13. PubMed ID: 3691548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spiral cortical fiber system in fertilized sea urchin eggs.
    Harris P
    Dev Biol; 1979 Feb; 68(2):525-32. PubMed ID: 571371
    [No Abstract]   [Full Text] [Related]  

  • 5. Isolation of intact sperm asters from fertilized sea urchin eggs.
    Hinkley RE; Wright BD
    J Exp Zool; 1985 Mar; 233(3):473-7. PubMed ID: 4038734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Spiral asters" and cytoplasmic rotation in sea urchin eggs: induction in Strongylocentrotus purpuratus eggs by elevated temperature.
    Schroeder TE; Battaglia DE
    J Cell Biol; 1985 Apr; 100(4):1056-62. PubMed ID: 3156865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. I. The structure and behavior of centrosomes before fusion of the pronuclei.
    Paweletz N; Mazia D; Finze EM
    Eur J Cell Biol; 1987 Oct; 44(2):195-204. PubMed ID: 3691547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural effects of mercaptoethanol during mitotic block of sea urchin eggs.
    Harris P
    Exp Cell Res; 1976 Jan; 97():63-73. PubMed ID: 942698
    [No Abstract]   [Full Text] [Related]  

  • 9. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition from mitosis to interphase in sea urchin first division: immunofluorescence studies of tubulin distribution in methacrylate sections.
    Harris PJ; Rubin BP
    J Histochem Cytochem; 1987 Mar; 35(3):343-9. PubMed ID: 3546483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of sea urchin egg microtubules with taxol and identification of mitotic spindle microtubule-associated proteins with monoclonal antibodies.
    Vallee RB; Bloom GS
    Proc Natl Acad Sci U S A; 1983 Oct; 80(20):6259-63. PubMed ID: 6137821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-tubulin immunofluorescence microscopy of microtubules present during the pronuclear movement of sea urchin fertilization.
    Bestor TH; Schatten G
    Dev Biol; 1981 Nov; 88(1):80-91. PubMed ID: 7026323
    [No Abstract]   [Full Text] [Related]  

  • 14. Spindle birefringence of isolated mitotic apparatus: further evidence for two birefringent spindle components.
    Forer A; Kalnins VI; Zimmerman AM
    J Cell Sci; 1976 Oct; 22(1):115-31. PubMed ID: 789386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microinjection of fluorescent tubulin into dividing sea urchin cells.
    Wadsworth P; Sloboda RD
    J Cell Biol; 1983 Oct; 97(4):1249-54. PubMed ID: 6684663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes.
    Sluder G; Rieder CL
    J Cell Biol; 1985 Mar; 100(3):897-903. PubMed ID: 3972900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of tubulin and microtubules of in vivo fertilized rabbit oocytes.
    Stambaugh RL; Nicosia SV
    J Androl; 1984; 5(4):259-64. PubMed ID: 6381445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic organization of microtubules and microtubule-organizing centers during the sexual phase of a parasitic protozoan, Lecudina tuzetae (Gregarine, Apicomplexa).
    Kuriyama R; Besse C; Gèze M; Omoto CK; Schrével J
    Cell Motil Cytoskeleton; 2005 Dec; 62(4):195-209. PubMed ID: 16240430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of microfilaments in sea urchin (Arbacia punctulata) eggs at fertilization: effects of cytochalasin B.
    Longo FJ
    Dev Biol; 1980 Feb; 74(2):422-33. PubMed ID: 7189488
    [No Abstract]   [Full Text] [Related]  

  • 20. Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions.
    Schroeder TE
    Dev Biol; 1987 Nov; 124(1):9-22. PubMed ID: 3311851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.