These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6987221)

  • 1. Functional and structural properties of immobilized subunits of Escherichia coli alkaline phosphatase.
    McCracken S; Meighen E
    J Biol Chem; 1980 Mar; 255(6):2396-404. PubMed ID: 6987221
    [No Abstract]   [Full Text] [Related]  

  • 2. Immobilized E. coli alkaline phosphatase. Its properties, stability, and utility in studying the dephosphorylation of proteins.
    Basheeruddin K; Rothman V; Margolis S
    Appl Biochem Biotechnol; 1985 Apr; 11(2):133-40. PubMed ID: 3896139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Isolation and properties of immobilized alkaline phosphatase from E. coli].
    Zagrebel'nyĭ SN; Oreshkova SF
    Prikl Biokhim Mikrobiol; 1987; 23(3):303-8. PubMed ID: 3303013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase.
    McCracken S; Meighen EA
    J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized subunits of alkaline phosphatase.
    McCracken S; Meighen E
    Methods Enzymol; 1987; 135():492-501. PubMed ID: 3600305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilized subunits.
    Chan WW
    Methods Enzymol; 1976; 44():491-503. PubMed ID: 799230
    [No Abstract]   [Full Text] [Related]  

  • 7. Degradation of abnormal proteins in Escherichia coli. Differential proteolysis in vitro of E. coli alkaline phosphatase cyanogen-bromide-cleavage products.
    Kemshead JT; Hipkiss AR
    Eur J Biochem; 1976 Dec; 71(1):185-92. PubMed ID: 795661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of immobilized Escherichia coli alkaline phosphatase reactors in flow injection analysis.
    Shan Y; McKelvie ID; Hart BT
    Anal Chem; 1993 Nov; 65(21):3053-60. PubMed ID: 8256868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the quaternary structure of reversibly immobilized alkaline phosphatase derivatives.
    McCracken S; Meighen E
    Can J Biochem; 1979 Jun; 57(6):834-42. PubMed ID: 383239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrochemical regulation of the activity of immobilized alkaline phosphatase].
    Kulis IuIu; Iasaĭtis IuIu; Razumas VI
    Dokl Akad Nauk SSSR; 1985; 285(3):710-2. PubMed ID: 3912144
    [No Abstract]   [Full Text] [Related]  

  • 12. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase.
    Zukin RS; Hollis DP
    J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560
    [No Abstract]   [Full Text] [Related]  

  • 13. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo.
    Halford SE; Lennette DA; Kelley PM; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2087-94. PubMed ID: 4552687
    [No Abstract]   [Full Text] [Related]  

  • 14. [Phospholipids of E. coli and activity of alkaline phosphatase].
    Nesmeianova MA; Evdokimova OA
    Biokhimiia; 1979 Aug; 44(8):1512-20. PubMed ID: 387098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The primary structure of Escherichia coli K12 aspartokinase I-homoserine dehydrogenase I-Isolation and characterisation of the peptides produced by cyanogen bromide.
    Cossart-Gheerbrant P; Sibilli-Weill L; Briley PA; Chalvignac MA; Le Bras G; Cohen GN
    Biochim Biophys Acta; 1978 Aug; 535(2):206-15. PubMed ID: 354697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of His-tagged alkaline phosphatase immobilization on a nanoporous nickel- titanium dioxide film.
    Zhang JK; Cass AE
    Anal Biochem; 2001 May; 292(2):307-10. PubMed ID: 11355868
    [No Abstract]   [Full Text] [Related]  

  • 17. Measurement of the zinc dissociation constants of alkaline phosphatase from Escherichia coli by equilibration with zinc ion buffers.
    Cohen SR; Wilson IB
    Biochemistry; 1966 Mar; 5(3):904-9. PubMed ID: 5330067
    [No Abstract]   [Full Text] [Related]  

  • 18. The relation between activity and zinc and chloride binding of Escherichia coli alkaline phosphatase.
    Norne JE; Szajn H; Csopak H; Reimarsson P; Lindman B
    Arch Biochem Biophys; 1979 Sep; 196(2):552-6. PubMed ID: 384916
    [No Abstract]   [Full Text] [Related]  

  • 19. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 20. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase.
    Xu X; Kantrowitz ER
    J Biol Chem; 1992 Aug; 267(23):16244-51. PubMed ID: 1644810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.