These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 698805)

  • 1. Electrical activation of visual pathways substitutes for tonic light input in triggering EEG correlates of food reward during conditioned behavior in cats.
    Rick JH; Marczynski TJ
    Brain Res; 1978 Oct; 154(1):105-18. PubMed ID: 698805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of reward contingent positive variation (RCPV) and cortical synchronization on visual input in the cat.
    Rick JH; Marczynski TJ
    Electroencephalogr Clin Neurophysiol; 1976 Sep; 41(3):301-9. PubMed ID: 60217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulvinar and lateral geniculate neuronal activity in the cat during operantly conditioned appetitive behavior.
    Wei JY; Marczynski TJ
    Brain Res; 1979 Apr; 166(1):9-25. PubMed ID: 421156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent dual effect of morphine on electrophysiologic correlates of positive reinforcement (reward contingent positive variation: RCPV) in the cat.
    Marczynski TJ; Hackett JT
    Pharmacol Biochem Behav; 1976 Aug; 5(2):95-105. PubMed ID: 996055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocular deprivation and the signal transmission by X- and Y-neurons of the cat lateral geniculate nucleus.
    Eysel UT; Grüsser OJ; Hoffmann KP
    Exp Brain Res; 1979 Feb; 34(3):521-39. PubMed ID: 217707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for excitatory connections from the deprived eye to the visual cortex in monocularly deprived kittens.
    Tsumoto T; Suda K
    Brain Res; 1978 Sep; 153(1):150-6. PubMed ID: 679041
    [No Abstract]   [Full Text] [Related]  

  • 7. [EEG-correlates of direct and reverse conditioned connections in a food-getting reflex formed to electric stimulation of the lateral geniculate body].
    Serdiuchenko VM; Merzhanova GKh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1977; 27(2):234-42. PubMed ID: 868279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of visual evoked responses to geniculate stimuli during light conditioning in the cat.
    Cherubini E; Bilancia G; Ricci GF
    Brain Res; 1976 Apr; 105(3):578-82. PubMed ID: 1260467
    [No Abstract]   [Full Text] [Related]  

  • 9. Masking of near-threshold flashes by brief electrical pulses to the optic tract of the cat.
    Thorn F
    Brain Res; 1974 Jan; 65(1):65-75. PubMed ID: 4810176
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of evoked responses in the visual pathway of cats with elevation of the intraocular pressure.
    Takeda Y; Nakai Y; Takaori S
    Brain Res; 1972 Aug; 43(2):373-81. PubMed ID: 5053283
    [No Abstract]   [Full Text] [Related]  

  • 11. Loss of temporal sensitivity in dorsal lateral geniculate nucleus and area 18 of the cat following monocular deprivation.
    Jones KR; Berkley MA
    J Neurophysiol; 1983 Jan; 49(1):254-68. PubMed ID: 6827299
    [No Abstract]   [Full Text] [Related]  

  • 12. Diffuse light input and quality of reward determine the occurrence of 'reward contingent positive variation' (RCPV) in cat.
    Marczynski TJ; Hackett JT; Sherry CJ; Allen SL
    Brain Res; 1971 Apr; 28(1):57-70. PubMed ID: 5557885
    [No Abstract]   [Full Text] [Related]  

  • 13. Optic radiation activity during sleep and waking.
    Gardner-Medwin AR
    Exp Neurol; 1974 May; 43(2):314-29. PubMed ID: 4363768
    [No Abstract]   [Full Text] [Related]  

  • 14. Lysergic acid diethylamide (LSD-25) mimicks the effect of diffuse light input on EEG correlates of conditioned operant behavior in cats.
    Marczynski TJ
    Exp Neurol; 1972 Feb; 34(2):255-63. PubMed ID: 5016198
    [No Abstract]   [Full Text] [Related]  

  • 15. Lack of binocular inhibition in monocular segment of lateral geniculate nucleus of rabbits.
    Lo FS
    Brain Res; 1983 Jul; 271(2):339-41. PubMed ID: 6616183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unit activity during the formation of backward conditioned connections.
    Merzhanova GK; Dorokhov VB
    Neurosci Behav Physiol; 1982; 12(4):344-50. PubMed ID: 7162619
    [No Abstract]   [Full Text] [Related]  

  • 17. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory and excitatory binocular convergence to visual cortical neurons of the cat.
    Tsumoto T
    Brain Res; 1978 Dec; 159(1):85-97. PubMed ID: 215266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Epicortical and intracortical aspects of visual evoked potentials (author's transl)].
    Pockberger H; Petsche H; Rappelsberger P; Müller-Paschinger IB; Prohaska O
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1979 Dec; 10(4):184-93. PubMed ID: 119629
    [No Abstract]   [Full Text] [Related]  

  • 20. Steady potential correlates of positive reinforcement and sleep onset in the cat; 'reward contingent positive variation' (RCPV).
    Marczynski TJ; York JL; Allen SL; Rick JH; Sherry CJ
    Brain Res; 1971 Mar; 26(2):305-32. PubMed ID: 5547180
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.