These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 698881)

  • 1. Cell cycle and DNA synthesis in the mosquito Aedes aegypti.
    Marchi A; Rai KS
    Can J Genet Cytol; 1978 Jun; 20(2):243-7. PubMed ID: 698881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cell cycle of an established cell line of the mosquito Aedes aegypti.
    Baim AS; Mukherjee AB
    Can J Genet Cytol; 1978 Sep; 20(3):373-6. PubMed ID: 743595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterochromatic banding pattern in two Brazilian populations of Aedes aegypti.
    de Sousa Rde C; Bicudo HE
    Genetica; 1999; 105(1):93-9. PubMed ID: 10483095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA replication of a polytene chromosome section in Drosophila prior to and during puffing.
    Hägele K; Kalisch WE
    Chromosoma; 1980; 79(1):75-83. PubMed ID: 6772414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome banding homologies in three species of Aedes (Stegomyia).
    Marchi A; Rai KS
    Can J Genet Cytol; 1986 Apr; 28(2):198-202. PubMed ID: 2424581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary map of the salivary gland chromosomes of Aedes (stegomyia) aegypti (Culicadae, Diptera).
    Sharma GP; Mittal OP; Chaudhry S; Pal V
    Cytobios; 1978; 22(87-88):169-78. PubMed ID: 753598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.
    Sivan A; Shriram AN; Muruganandam N; Thamizhmani R
    Acta Trop; 2017 Mar; 167():121-127. PubMed ID: 28024869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mosquito larval consumption of toxic arborescent leaf-litter, and its biocontrol potential.
    David JP; Tilquin M; Rey D; Ravanel P; Meyran JC
    Med Vet Entomol; 2003 Jun; 17(2):151-7. PubMed ID: 12823832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases.
    Dixon DP; Van Ekeris L; Linser PJ
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28230813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian rhythms in rate of oxygen consumption by larvae of the mosquito, Aedes aegypti (L).
    Yap HH; Cutkomp LK; Halberg F
    Chronobiologia; 1974; 1(1):54-61. PubMed ID: 4459046
    [No Abstract]   [Full Text] [Related]  

  • 11. Extensive Genetic Differentiation between Homomorphic Sex Chromosomes in the Mosquito Vector, Aedes aegypti.
    Fontaine A; Filipovic I; Fansiri T; Hoffmann AA; Cheng C; Kirkpatrick M; Rašic G; Lambrechts L
    Genome Biol Evol; 2017 Sep; 9(9):2322-2335. PubMed ID: 28945882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti larvae in the northeast region of Thailand.
    Pipitgool V; Maleewong W; Daenseegaew W; Thaiklar K
    Southeast Asian J Trop Med Public Health; 1991 Sep; 22(3):426-8. PubMed ID: 1818396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory and semi-field evaluation of Mosquito Dunks against Aedes aegypti and Aedes albopictus larvae (Diptera: Culicidae).
    Fansiri T; Thavara U; Tawatsin A; Krasaesub S; Sithiprasasna R
    Southeast Asian J Trop Med Public Health; 2006 Jan; 37(1):62-6. PubMed ID: 16771214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti.
    Poupardin R; Riaz MA; Vontas J; David JP; Reynaud S
    Insect Mol Biol; 2010 Apr; 19(2):185-93. PubMed ID: 20041961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.
    Jonusaite S; Donini A; Kelly SP
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Mar; 205():58-67. PubMed ID: 27988380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-mediated differential expression of immune and stress-related genes in Aedes aegypti larvae.
    Muturi EJ; Nyakeriga A; Blackshear M
    J Am Mosq Control Assoc; 2012 Jun; 28(2):79-83. PubMed ID: 22894117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome replication in cells of a continuous line derived from Aedes albopictus (Skuse) larvae.
    Bianchi NO; Bianchi MS; Sweet BH
    Experientia; 1972 Dec; 28(12):1495-6. PubMed ID: 4654226
    [No Abstract]   [Full Text] [Related]  

  • 18. Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).
    Campbell CL; Dickson LB; Lozano-Fuentes S; Juneja P; Jiggins FM; Black WC
    BMC Genomics; 2017 Dec; 18(1):943. PubMed ID: 29202694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A technique for preparing polytene chromosomes from Aedes aegypti (Diptera, Culicinae).
    Campos J; Andrade CF; Recco-Pimentel SM
    Mem Inst Oswaldo Cruz; 2003 Apr; 98(3):387-90. PubMed ID: 12886421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified dihydrofolate reductase genes are located in chromosome regions containing DNA that replicates during the first half of S-phase.
    Kellems RE; Harper ME; Smith LM
    J Cell Biol; 1982 Feb; 92(2):531-9. PubMed ID: 7061595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.