These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6989396)

  • 21. Mutual interaction of ion uptake and membrane potential.
    Borst-Pauwels GW
    Biochim Biophys Acta; 1993 Jan; 1145(1):15-24. PubMed ID: 8422406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apparent saturation kinetics of divalent cation uptake in yeast caused by a reduction in the surface potential.
    Borst-Pauwels GW; Theuvenet AP
    Biochim Biophys Acta; 1984 Apr; 771(2):171-6. PubMed ID: 6367824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thiamine transport in Saccharomyces cerevisiae protoplasts.
    Nishimura H; Sempuku K; Iwashima A
    J Bacteriol; 1982 May; 150(2):960-2. PubMed ID: 7040346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of thiamine transport in Saccharomyces cerevisiae.
    Iwashima A; Nose Y
    J Bacteriol; 1976 Dec; 128(3):855-7. PubMed ID: 791939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Kaneko Y; Nosaka K; Iwashima A
    J Bacteriol; 1992 Jul; 174(14):4701-6. PubMed ID: 1624458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of cations with phosphate uptake by Saccharomyces cerevisiae. Effects of surface potential.
    Roomans GM; Borst-Pauwels GW
    Biochem J; 1979 Mar; 178(3):521-7. PubMed ID: 36883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of altered plasma membrane fatty acid composition on cesium transport characteristics and toxicity in Saccharomyces cerevisiae.
    Hoptroff MJ; Thomas S; Avery SV
    Can J Microbiol; 1997 Oct; 43(10):954-62. PubMed ID: 9396148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a negative membrane potential and for movement of C1- against its electrochemical gradient in the ascomycete Neocosmospora vasinfecta.
    Miller AG; Budd K
    J Bacteriol; 1976 Dec; 128(3):741-8. PubMed ID: 11206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping of gene controlling thiamine transport in Saccharomyces cerevisiae.
    Ruml T; Silhánková L
    Yeast; 1996 Sep; 12(12):1279-83. PubMed ID: 8905932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of uncouplers on facilitated diffusion of sorbose in Saccharomyces cerevisiae.
    Van den Broek PJ; Haasnoot CJ; Van Leeuwen CC; Van Steveninck J
    Biochim Biophys Acta; 1982 Aug; 689(3):429-36. PubMed ID: 6751390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of Ca2+ and Sr2+ uptake by yeast. Effects of pH, cations and phosphate.
    Roomans GM; Theuvenet AP; van den Berg TP; Borst-Pauwels GW
    Biochim Biophys Acta; 1979 Feb; 551(1):187-96. PubMed ID: 34435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thiamine transport mutants of Saccharomyces cerevisiae.
    Iwashima A; Wakabayashi Y; Nose Y
    Biochim Biophys Acta; 1975 Dec; 413(2):243-7. PubMed ID: 172152
    [No Abstract]   [Full Text] [Related]  

  • 33. Dual effect of monovalent cations on the glucose-induced transient increase in the rate of DMP influx into Saccharomyces cerevisiae.
    Borst-Pauwels GW; Van de Mortel JB; Theuvenet AP
    FEMS Microbiol Lett; 1992 Aug; 74(1):99-104. PubMed ID: 1516812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential inactivation of ammonium and glucose transport in Saccharomyces cerevisiae during fermentation.
    Cardoso H; Leão C
    FEMS Microbiol Lett; 1992 Jul; 73(1-2):155-9. PubMed ID: 1521764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of sulfate uptake by yeast.
    Roomans GM; Kuypers GA; Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1979 Feb; 551(1):197-206. PubMed ID: 34436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of thiamine into red blood cells of the rat.
    Komai T; Shindo H
    J Nutr Sci Vitaminol (Tokyo); 1974; 20(3):189-96. PubMed ID: 4436721
    [No Abstract]   [Full Text] [Related]  

  • 37. Transport and metabolism of thiamine in Ehrlich ascites-carcinoma cells.
    Menon IA; Quastel JH
    Biochem J; 1966 Jun; 99(3):766-75. PubMed ID: 5964972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions.
    Okorokov LA; Lichko LP; Kadomtseva VM; Kholodenko VP; Titovsky VT; Kulaev IS
    Eur J Biochem; 1977 May; 75(2):373-7. PubMed ID: 328273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of ammonium permease activity and carbon source on the uptake of ammonium from simple defined media by Saccharomyces cerevisiae.
    Egbosimba EE; Slaughter JC
    J Gen Microbiol; 1987 Feb; 133(2):375-9. PubMed ID: 3309154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in 45Ca and 109Cd uptake, membrane potential and cell pH in Saccharomyces cerevisiae provoked by Cd2+.
    Kessels BG; Theuvenet AP; Peters PH; Dobbelmann J; Borst-Pauwels GW
    J Gen Microbiol; 1987 Apr; 133(4):843-8. PubMed ID: 3309176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.