These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 6989552)
1. High frequency mechanical ventilation in severe hyaline membrane disease an alternative treatment? Bland RD; Kim MH; Light MJ; Woodson JL Crit Care Med; 1980 May; 8(5):275-80. PubMed ID: 6989552 [TBL] [Abstract][Full Text] [Related]
3. The effect of independent variations in inspiratory-expiratory ratio and end expiratory pressure during mechanical ventilation in hyaline membrane disease: the significance of mean airway pressure. Boros SJ; Matalon SV; Ewald R; Leonard AS; Hunt CE J Pediatr; 1977 Nov; 91(5):794-8. PubMed ID: 333078 [TBL] [Abstract][Full Text] [Related]
4. To PEEP or not to PEEP? Bartholomew KM; Brownlee KG; Snowden S; Dear PR Arch Dis Child Fetal Neonatal Ed; 1994 May; 70(3):F209-12. PubMed ID: 8198416 [TBL] [Abstract][Full Text] [Related]
5. Effects of alterations of inspiratory and expiratory pressures and inspiratory/expiratory ratios on mean airway pressure, blood gases, and intracranial pressure. Stewart AR; Finer NN; Peters KL Pediatrics; 1981 Apr; 67(4):474-81. PubMed ID: 6789294 [TBL] [Abstract][Full Text] [Related]
6. Mortality and morbidity associated with pressure- and volume-limited infant ventilators. Boros SJ; Orgill AA Am J Dis Child; 1978 Sep; 132(9):865-9. PubMed ID: 356590 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of Mid-Frequency Ventilation Among Infants With Respiratory Distress Syndrome. Bhat R; Kelleher J; Ambalavanan N; Chatburn RL; Mireles-Cabodevila E; Carlo WA Respir Care; 2017 Apr; 62(4):481-488. PubMed ID: 28049742 [TBL] [Abstract][Full Text] [Related]
8. Multicenter controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome. Keszler M; Modanlou HD; Brudno DS; Clark FI; Cohen RS; Ryan RM; Kaneta MK; Davis JM Pediatrics; 1997 Oct; 100(4):593-9. PubMed ID: 9310511 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation. Bien MY; Shui Lin Y; Shih CH; Yang YL; Lin HW; Bai KJ; Wang JH; Ru Kou Y Crit Care Med; 2011 Oct; 39(10):2253-62. PubMed ID: 21666447 [TBL] [Abstract][Full Text] [Related]
10. Inadvertent positive end-expiratory pressure in mechanically ventilated newborn infants: detection and effect on lung mechanics and gas exchange. Simbruner G J Pediatr; 1986 Apr; 108(4):589-95. PubMed ID: 3083078 [TBL] [Abstract][Full Text] [Related]
11. Is continuous transpulmonary pressure better than conventional respiratory management of hyaline membrane disease? A controlled study. Belenky DA; Orr RJ; Woodrum DE; Hodson WA Pediatrics; 1976 Dec; 58(6):800-8. PubMed ID: 792789 [TBL] [Abstract][Full Text] [Related]
12. Haemodynamic effects of pressure support and PEEP ventilation by nasal route in patients with stable chronic obstructive pulmonary disease. Ambrosino N; Nava S; Torbicki A; Riccardi G; Fracchia C; Opasich C; Rampulla C Thorax; 1993 May; 48(5):523-8. PubMed ID: 8322240 [TBL] [Abstract][Full Text] [Related]
13. Pressure-controlled, inverse ratio ventilation that avoids air trapping in the adult respiratory distress syndrome. Armstrong BW; MacIntyre NR Crit Care Med; 1995 Feb; 23(2):279-85. PubMed ID: 7867353 [TBL] [Abstract][Full Text] [Related]
14. Gas exchange during conventional and high-frequency pulse ventilation in the surfactant-deficient lung: influence of positive end-expiratory pressure. Jibelian G; Lachmann B Crit Care Med; 1984 Sep; 12(9):769-73. PubMed ID: 6432439 [TBL] [Abstract][Full Text] [Related]
15. Mechanical ventilation and arterial blood gas measurements 24 hours postextracorporeal life support for survivors of pediatric respiratory failure. Moler FW; Palmisano JM; Custer JR; Bartlett RH Crit Care Med; 1996 Apr; 24(4):679-82. PubMed ID: 8612422 [TBL] [Abstract][Full Text] [Related]
16. Rescue ventilation with high frequency oscillation in premature baboons with hyaline membrane disease. deLemos RA; Coalson JJ; deLemos JA; King RJ; Clark RH; Gerstmann DR Pediatr Pulmonol; 1992 Jan; 12(1):29-36. PubMed ID: 1579373 [TBL] [Abstract][Full Text] [Related]
17. Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Richecoeur J; Lu Q; Vieira SR; Puybasset L; Kalfon P; Coriat P; Rouby JJ Am J Respir Crit Care Med; 1999 Jul; 160(1):77-85. PubMed ID: 10390383 [TBL] [Abstract][Full Text] [Related]
18. Compliance of the respiratory system as a predictor for successful extubation in very-low-birth-weight infants recovering from respiratory distress syndrome. Smith J; Pieper CH; Maree D; Gie RP S Afr Med J; 1999 Oct; 89(10):1097-102. PubMed ID: 10582068 [TBL] [Abstract][Full Text] [Related]
19. Nasal continuous positive airway pressure. Improvement in arterial oxygenation in hyaline membrane disease. Harris H; Wilson S; Brans Y; Wirtschafter D; Cassady G Biol Neonate; 1976; 29(3-4):231-7. PubMed ID: 8164 [TBL] [Abstract][Full Text] [Related]
20. Improvement of lung mechanics by exogenous surfactant: effect of prior application of high positive end-expiratory pressure. Hartog A; Gommers D; Haitsma JJ; Lachmann B Br J Anaesth; 2000 Nov; 85(5):752-6. PubMed ID: 11094593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]