These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6989632)

  • 1. mRNA translocation in protein biosynthesis: association constants related to the translocation process.
    Holschuh K; Gassen HG
    FEBS Lett; 1980 Feb; 110(2):169-72. PubMed ID: 6989632
    [No Abstract]   [Full Text] [Related]  

  • 2. A study of the mechanism of translocation in ribosomes. III. Influence of the alkylation of the SH groups of the proteins of the ribosomal 30S subparticle on "nonenzymatic" translocation in the ribosomes of Escherichia coli.
    Gavrilova LP; Kostyashkina OE; Rachkus YuA
    Mol Biol; 1974 Nov; 8(3):362-6. PubMed ID: 4612347
    [No Abstract]   [Full Text] [Related]  

  • 3. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli.
    Revel M; Lelong JC; Brawerman G; Gros F
    Nature; 1968 Sep; 219(5158):1016-21. PubMed ID: 4876939
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation and synthesis processes in the living cell. II. Kinetics of protein synthesis.
    Simon Z; Ruckenstein E
    J Theor Biol; 1966 Jul; 11(2):299-313. PubMed ID: 5337898
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of codon-anticodon interaction in ribosomes. Heterogeneity of tRNA complexes with 70-S ribosomes of Escherichia coli.
    Kirillov SV; Makhno VI; Odinzov VB; Semenkov YP
    Eur J Biochem; 1978 Aug; 89(1):305-13. PubMed ID: 359330
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of the inhibition of protein synthesis by kirromycin. Role of elongation factor Tu and ribosomes.
    Wolf H; Chinali G; Parmeggiani A
    Eur J Biochem; 1977 May; 75(1):67-75. PubMed ID: 324765
    [No Abstract]   [Full Text] [Related]  

  • 7. A possible mechanism for initiation of protein synthesis.
    Nakamoto T; Kalokofsky D
    Proc Natl Acad Sci U S A; 1966 Mar; 55(3):606-13. PubMed ID: 5329011
    [No Abstract]   [Full Text] [Related]  

  • 8. A prediction fulfilled.
    Nature; 1970 Dec; 228(5278):1254-5. PubMed ID: 4922685
    [No Abstract]   [Full Text] [Related]  

  • 9. The tRNA-mRNA complex of protein biosynthesis.
    Thomas BR
    Biochimie; 1973; 55(11):1325-39. PubMed ID: 4598082
    [No Abstract]   [Full Text] [Related]  

  • 10. Interference of virginiamycin M with the initiation and the elongation of peptide chains in cell-free systems.
    Cocito C; Voorma HO; Bosch L
    Biochim Biophys Acta; 1974 Mar; 340(3):285-98. PubMed ID: 4596864
    [No Abstract]   [Full Text] [Related]  

  • 11. Modification of E. coli ribosomes and coliphage MS2 RNA by bisulfite: effects on ribosomal binding and protein synthesis.
    Braverman B; Shapiro R; Szer W
    Nucleic Acids Res; 1975 Apr; 2(4):501-7. PubMed ID: 1094421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of SH-reagents with the ribosomal 30 S subparticle and 'non-enzymatic' translocation.
    Gavrilova LP; Spirin AS
    FEBS Lett; 1974 Feb; 39(1):13-6. PubMed ID: 4604624
    [No Abstract]   [Full Text] [Related]  

  • 13. "Nonenzymatic" translation.
    Gavrilova LP; Spirin AS
    Methods Enzymol; 1974; 30():452-62. PubMed ID: 4603292
    [No Abstract]   [Full Text] [Related]  

  • 14. Hydrostatic pressure effects on the translation stages of protein synthesis in a cell-free system from Escherichia coli.
    Arnold RM; Albright LJ
    Biochim Biophys Acta; 1971 May; 238(2):347-54. PubMed ID: 4936437
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential utilization of leucyl-tRNAs by Escherichia coli.
    Holmes WM; Goldman E; Miner TA; Hatfield GW
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1393-7. PubMed ID: 323850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3'-terminal ribosyl residues.
    Chinali G; Sprinzl M; Parmeggiani A; Cramer F
    Biochemistry; 1974 Jul; 13(15):3001-10. PubMed ID: 4601427
    [No Abstract]   [Full Text] [Related]  

  • 17. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli.
    Schlessinger D; Mangiarotti G; Apirion D
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1782-9. PubMed ID: 4867673
    [No Abstract]   [Full Text] [Related]  

  • 18. Interactions of edeine with bacterial ribosomal subunits. Selective inhibition of aminoacyl-tRNA binding sites.
    Szer W; Kurylo-Borowska Z
    Biochim Biophys Acta; 1972 Feb; 259(3):357-68. PubMed ID: 4552091
    [No Abstract]   [Full Text] [Related]  

  • 19. [Termination step of protein biosynthesis and release of ribosomes from mRNA].
    Hirashima A
    Tanpakushitsu Kakusan Koso; 1972 Dec; 17(12):897-905. PubMed ID: 4569224
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of N-acetylphenylalanyl transfer ribonucleic acid binding to 30S ribosomal subunit of Escherichia coli by N-formylmethionyl transfer ribonucleic acid.
    Blumberg BM; Bernal SD; Nakamoto T
    Biochemistry; 1974 Jul; 13(16):3307-11. PubMed ID: 4601432
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.