BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6989805)

  • 1. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.
    Hopper DJ; Kemp PD
    J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes.
    Poh CL; Bayly RC
    J Bacteriol; 1980 Jul; 143(1):59-69. PubMed ID: 6995451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866.
    Chen YF; Chao H; Zhou NY
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1349-56. PubMed ID: 23736872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol.
    Keat MJ; Hopper DJ
    Biochem J; 1978 Nov; 175(2):659-67. PubMed ID: 743216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896.
    Keat MJ; Hopper DJ
    Biochem J; 1978 Nov; 175(2):649-58. PubMed ID: 743215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of isofunctional enzymes in Pseudomonas alcaligenes mutants defective in the gentisate pathway.
    Poh CL; Bayly RC
    J Appl Bacteriol; 1988 May; 64(5):451-8. PubMed ID: 3170385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid.
    Worsey MJ; Williams PA
    J Bacteriol; 1975 Oct; 124(1):7-13. PubMed ID: 1176436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866.
    Chao HJ; Chen YF; Fang T; Xu Y; Huang WE; Zhou NY
    Appl Environ Microbiol; 2016 Jan; 82(2):724-31. PubMed ID: 26567311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1.
    Whited GM; Gibson DT
    J Bacteriol; 1991 May; 173(9):3017-20. PubMed ID: 2019564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1.
    Wright A; Olsen RH
    Appl Environ Microbiol; 1994 Jan; 60(1):235-42. PubMed ID: 8117079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gentisic acid and its 3- and 4-methyl-substituted homologoues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol.
    Hopper DJ; Chapman PJ
    Biochem J; 1971 Mar; 122(1):19-28. PubMed ID: 4330964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and sequences of p-hydroxybenzaldehyde dehydrogenase and other plasmid-encoded genes for early enzymes of the p-cresol degradative pathway in Pseudomonas putida NCIMB 9866 and 9869.
    Cronin CN; Kim J; Fuller JH; Zhang X; McIntire WS
    DNA Seq; 1999; 10(1):7-17. PubMed ID: 10565539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in the enzyme properties of Pseudomonas aeruginosa strain 2x oxidizing p-xylene.
    Golovleva LA; Golovlev EL; Panchak NV; Ganbarov KG
    Biol Bull Acad Sci USSR; 1979; 6(4):459-63. PubMed ID: 121547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and biochemical characterization of the xlnD-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867.
    Gao X; Tan CL; Yeo CC; Poh CL
    J Bacteriol; 2005 Nov; 187(22):7696-702. PubMed ID: 16267294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2.
    Worsey MJ; Franklin FC; Williams PA
    J Bacteriol; 1978 Jun; 134(3):757-64. PubMed ID: 659369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53.
    Keil H; Keil S; Pickup RW; Williams PA
    J Bacteriol; 1985 Nov; 164(2):887-95. PubMed ID: 2997136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis.
    Yeo CC; Tham JM; Yap MW; Poh CL
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2833-2840. PubMed ID: 9274037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of phenol and cresols by mutants of Pseudomonas putida.
    Bayly RC; Wigmore GJ
    J Bacteriol; 1973 Mar; 113(3):1112-20. PubMed ID: 4347965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1.
    Kunz DA; Chapman PJ
    J Bacteriol; 1981 Jun; 146(3):952-64. PubMed ID: 7240090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.