These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6989823)

  • 1. The role of tryptophan in aspartate transcarbamylase.
    Foote J; Ikeda DM; Kantrowitz ER
    J Biol Chem; 1980 Jun; 255(11):5154-8. PubMed ID: 6989823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally important arginine residues of aspartate transcarbamylase.
    Kantrowitz ER; Lipscomb WN
    J Biol Chem; 1977 May; 252(9):2873-80. PubMed ID: 323257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan residues at subunit interfaces used as fluorescence probes to investigate homotropic and heterotropic regulation of aspartate transcarbamylase.
    Fetler L; Tauc P; Hervé G; Cunin R; Brochon JC
    Biochemistry; 2001 Jul; 40(30):8773-82. PubMed ID: 11467937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aspartate transcarbamylase lacking catalytic subunit interactions. Study of conformational changes by ultraviolet absorbance and circular dichroism spectroscopy.
    Kerbiriou D; Hervé G
    J Biol Chem; 1977 May; 252(9):2881-90. PubMed ID: 323258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase.
    Williams MK; Kantrowitz ER
    Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase.
    Sakash JB; Chan RS; Tsuruta H; Kantrowitz ER
    J Biol Chem; 2000 Jan; 275(2):752-8. PubMed ID: 10625604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
    Wales ME; Madison LL; Glaser SS; Wild JR
    J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of domain closure for homotropic cooperativity in Escherichia coli aspartate transcarbamylase.
    Newton CJ; Kantrowitz ER
    Biochemistry; 1990 Feb; 29(6):1444-51. PubMed ID: 2185840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of two purified mutants of Escherichia coli aspartate transcarbamylase with single amino acid substitutions.
    Silver RS; Daigneault JP; Teague PD; Kantrowitz ER
    J Mol Biol; 1983 Aug; 168(4):729-45. PubMed ID: 6350607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain.
    Newton CJ; Kantrowitz ER
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2309-13. PubMed ID: 2179954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of hybrid aspartate transcarbamoylase formed with native subunits from divergent bacteria.
    Shanley MS; Foltermann KF; O'Donovan GA; Wild JR
    J Biol Chem; 1984 Oct; 259(20):12672-7. PubMed ID: 6386799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary constraint in hybrid of aspartate transcarbamylase containing wild-type and mutant catalytic subunits.
    Gibbons I; Flatgaard JE; Schachman HK
    Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4298-302. PubMed ID: 1105578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent perturbation of the allosteric regulation of aspartate transcarbamylase.
    LiCata VJ; Allewell NM
    Biochim Biophys Acta; 1998 May; 1384(2):306-14. PubMed ID: 9659392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent.
    Chan WW; Enns CA
    Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-alanosine: a noncooperative substrate for Escherichia coli aspartate transcarbamylase.
    Baillon J; Tauc P; Hervé G
    Biochemistry; 1985 Dec; 24(25):7182-7. PubMed ID: 3910096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific substitutions of the Tyr-165 residue in the catalytic chain of aspartate transcarbamoylase promotes a T-state preference in the holoenzyme.
    Wales ME; Hoover TA; Wild JR
    J Biol Chem; 1988 May; 263(13):6109-14. PubMed ID: 3283120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase.
    Middleton SA; Stebbins JW; Kantrowitz ER
    Biochemistry; 1989 Feb; 28(4):1617-26. PubMed ID: 2655696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural consequences of the replacement of Glu239 by Gln in the catalytic chain of Escherichia coli aspartate transcarbamylase.
    Tauc P; Vachette P; Middleton SA; Kantrowitz ER
    J Mol Biol; 1990 Jul; 214(1):327-35. PubMed ID: 1973463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of amino acid analogs during the biosynthesis of Escherichia coli aspartate transcarbamylase.
    Gueguen P; Padron M; Perbal B; Hervé G
    Biochim Biophys Acta; 1980 Sep; 615(1):59-69. PubMed ID: 7000192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of aspartate transcarbamylase. Interaction of the enzyme with analogs of aspartate and succinate.
    Foote J; Lauritzen AM; Lipscomb WN
    J Biol Chem; 1985 Aug; 260(17):9624-9. PubMed ID: 3894357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.