BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6990985)

  • 1. 31P nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. I. Cytoplasmic membrane and total phospholipids.
    Burnell E; van Alphen L; Verkleij A; de Kruijff B
    Biochim Biophys Acta; 1980 Apr; 597(3):492-501. PubMed ID: 6990985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. II. Lipopolysaccharide and lipopolysaccharide-phospholipid complexes.
    van Alphen L; Verkleij A; Burnell E; Lugtenberg B
    Biochim Biophys Acta; 1980 Apr; 597(3):502-17. PubMed ID: 6990986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. III. The outer membrane.
    Burnell E; van Alphen L; Verkleij A; de Kruijff B; Lugtenberg B
    Biochim Biophys Acta; 1980 Apr; 597(3):518-32. PubMed ID: 6769482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural properties of phospholipids in the rat liver inner mitochondrial membrane.
    Cullis PR; de Kruijff B; Hope MJ; Nayar R; Rietveld A; Verkleij AJ
    Biochim Biophys Acta; 1980 Aug; 600(3):625-35. PubMed ID: 7407135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of lipid biosynthesis in isolated cytoplasmic membrane vesicles of Escherichia coli by freeze fracture electron microscopy.
    Demant EJ; Op Den Kamp JA
    Arch Biochem Biophys; 1982 Jan; 213(1):186-92. PubMed ID: 7036905
    [No Abstract]   [Full Text] [Related]  

  • 6. The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze-fracture electron-microscopy.
    de Kruijff B; Verkley AJ; van Echteld CJ; Gerritsen WJ; Mombers C; Noordam PC; de Gier J
    Biochim Biophys Acta; 1979 Aug; 555(2):200-9. PubMed ID: 476102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP
    Chem Phys Lipids; 1986 Dec; 42(4):279-301. PubMed ID: 3829210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase behavior of the major lipids of tetrahymena ciliary membranes.
    Ferguson KA; Hui SW; Stewart TP; Yeagle PL
    Biochim Biophys Acta; 1982 Jan; 684(2):179-86. PubMed ID: 6798999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases.
    Boni LT; Hui SW
    Biochim Biophys Acta; 1983 Jun; 731(2):177-85. PubMed ID: 6849915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P-NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver.
    de Kruijff B; Reitveld A; Cullis PR
    Biochim Biophys Acta; 1980 Aug; 600(2):343-57. PubMed ID: 7407118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes.
    Tournois H; Leunissen-Bijvelt J; Haest CW; de Gier J; de Kruijff B
    Biochemistry; 1987 Oct; 26(21):6613-21. PubMed ID: 2447938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative estimation of non-lamellar structures in membranes. A 31P-nmr and electron microscopical study of the influence of linolic acid on the erythrocyte membrane.
    Arnold K; Pratsch L; Meyer HW
    Acta Histochem; 1982; 70(2):205-13. PubMed ID: 6810632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes.
    de Kruijff B; Cullis PR
    Biochim Biophys Acta; 1980 Nov; 602(3):477-90. PubMed ID: 6254562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane fusion and inverted phases.
    Ellens H; Siegel DP; Alford D; Yeagle PL; Boni L; Lis LJ; Quinn PJ; Bentz J
    Biochemistry; 1989 May; 28(9):3692-703. PubMed ID: 2751990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidic particles.
    Verkleij AJ; de Kruijff B; van Echteld CJ; Gerritsen WJ; Mombers C; Noordam PC; Leunissen-Bijvelt J; de Gier J
    Acta Histochem Suppl; 1981; 23():145-9. PubMed ID: 6784158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane.
    De Grip WJ; Drenthe EH; Van Echteld CJ; De Kruijff B; Verkleij AJ
    Biochim Biophys Acta; 1979 Dec; 558(3):330-7. PubMed ID: 508752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between three-dimensional arrays of "lipidic particles" and bicontinuous cubic lipid phases.
    Rilfors L; Eriksson PO; Arvidson G; Lindblom G
    Biochemistry; 1986 Nov; 25(23):7702-11. PubMed ID: 3801439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup.
    Cullis PR; De Kruyff B
    Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a low density cytoplasmic membrane subfraction isolated from Escherichia coli.
    van Heerikhuizen H; Kwak E; van Bruggen EF; Witholt B
    Biochim Biophys Acta; 1975 Dec; 413(2):177-91. PubMed ID: 1103977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.