These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 6991657)

  • 21. Calcification in atherosclerosis. I. Human studies.
    Tanimura A; McGregor DH; Anderson HC
    J Exp Pathol; 1986; 2(4):261-73. PubMed ID: 2946818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Participation of smooth muscle cells in the formation of atherosclerotic plaques].
    Shekhonin BV; Rukosuev VS
    Biull Eksp Biol Med; 1975 Jun; 79(6):110-3. PubMed ID: 1222237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of thrombomodulin in human aortic smooth muscle cells with special reference to atherosclerotic lesion types and age differences.
    Yoshii Y; Okada Y; Sasaki S; Mori H; Oida K; Ishii H
    Med Electron Microsc; 2003 Sep; 36(3):165-72. PubMed ID: 14505060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen types in normal and atherosclerotic human aorta.
    Dahiya R; Ganguly NK; Majumdar S; Chakravarti RN
    Indian Heart J; 1983; 35(6):326-8. PubMed ID: 6667948
    [No Abstract]   [Full Text] [Related]  

  • 25. Decorin promotes aortic smooth muscle cell calcification and colocalizes to calcified regions in human atherosclerotic lesions.
    Fischer JW; Steitz SA; Johnson PY; Burke A; Kolodgie F; Virmani R; Giachelli C; Wight TN
    Arterioscler Thromb Vasc Biol; 2004 Dec; 24(12):2391-6. PubMed ID: 15472131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of matrix Gla protein and osteonectin mRNA by human aortic smooth muscle cells.
    Hao H; Hirota S; Ishibashi-Ueda H; Kushiro T; Kanmatsuse K; Yutani C
    Cardiovasc Pathol; 2004; 13(4):195-202. PubMed ID: 15210134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics.
    Shekhonin BV; Domogatsky SP; Muzykantov VR; Idelson GL; Rukosuev VS
    Coll Relat Res; 1985 Sep; 5(4):355-68. PubMed ID: 3902343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies.
    Katsuda S; Okada Y; Minamoto T; Oda Y; Matsui Y; Nakanishi I
    Arterioscler Thromb; 1992 Apr; 12(4):494-502. PubMed ID: 1373075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monoclonal antibodies to collagens for immunofluorescent examination of human skin.
    Werkmeister JA; Ramshaw JA
    Acta Derm Venereol; 1989; 69(5):399-402. PubMed ID: 2572104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The growth of human atherosclerotic and non-atherosclerotic aortic intima and media in vitro.
    Björkerud S; Ekroth R
    Artery; 1980; 8(4):329-35. PubMed ID: 7213040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture.
    Shah PK; Falk E; Badimon JJ; Fernandez-Ortiz A; Mailhac A; Villareal-Levy G; Fallon JT; Regnstrom J; Fuster V
    Circulation; 1995 Sep; 92(6):1565-9. PubMed ID: 7664441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of heparin-binding EGF-like growth factor in the smooth muscle cells and macrophages of human atherosclerotic plaques.
    Miyagawa J; Higashiyama S; Kawata S; Inui Y; Tamura S; Yamamoto K; Nishida M; Nakamura T; Yamashita S; Matsuzawa Y
    J Clin Invest; 1995 Jan; 95(1):404-11. PubMed ID: 7814641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V.
    Morton LF; Barnes MJ
    Atherosclerosis; 1982 Mar; 42(1):41-51. PubMed ID: 7082417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque.
    Okura Y; Brink M; Zahid AA; Anwar A; Delafontaine P
    J Mol Cell Cardiol; 2001 Oct; 33(10):1777-89. PubMed ID: 11603921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of unesterified cholesterol-containing particles in human atherosclerotic lesions.
    Sarig S; Utian WH; Sheean LA; Gorodeski GI
    Am J Pathol; 1995 Jan; 146(1):139-47. PubMed ID: 7856723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ: implications for diffuse intimal calcification.
    Bobryshev YV
    J Pathol; 2005 Apr; 205(5):641-50. PubMed ID: 15776485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The association of medial collagenous tissue with atheroma formation in the aging human aorta as revealed by a special technique.
    Greenberg SR
    Histol Histopathol; 1986 Oct; 1(4):323-6. PubMed ID: 2980126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcification in atherosclerotic plaque of human carotid arteries: associations with mast cells and macrophages.
    Jeziorska M; McCollum C; Woolley DE
    J Pathol; 1998 May; 185(1):10-7. PubMed ID: 9713354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Matrix production of smooth muscle cells from rat aorta in vitro.
    Stiemer B; Springmeier G; el-Jarad L; Schröter-Kermani C
    Histol Histopathol; 1993 Jan; 8(1):63-72. PubMed ID: 8443436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development-related changes in matrix metalloproteinase expression in human aortic smooth muscle cells.
    Sasaguri Y; Murahashi N; Sugama K; Kato S; Hiraoka K; Satoh T; Isomoto H; Morimatsu M
    Lab Invest; 1994 Aug; 71(2):261-9. PubMed ID: 8078305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.