BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 699190)

  • 1. DL-2-Oxo-3-(2-mercaptoethyl)-5-phenylimidazolidine. A sulfhydryl metabolite of levamisole that interacts with microtubules.
    De Brabander M; Aerts F; Geuens G; van Ginckel R; van de Veire R; van Belle H
    Chem Biol Interact; 1978 Oct; 23(1):45-63. PubMed ID: 699190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levamisole inhibition of microsomal lipid peroxidation as related to its sulfhydryl metabolite dl-2-oxo-3-(2-mercaptoethyl)-5-phenylimadazolidine.
    Kumar KS; Dobbs CR; Weiss JF; Chirigos MA
    J Immunopharmacol; 1980; 2(1):73-83. PubMed ID: 7452005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug-protein interactions. Inhibition of the action of levamisole on human serum albumin in vitro by DL-2-oxo-3-(2-mercaptoethyl)-5-phenyl-imidazolidine.
    Chicault M; Luu-Duc C; Boucherle A
    Arzneimittelforschung; 1984; 34(7):821-3. PubMed ID: 6541918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomodulatory action of levamisole--II. Enhancement of concanavalin A response by levamisole is associated with an oxidation degradation product of levamisole formed during lymphocyte culture.
    Hanson KA; Heidrick ML
    Int J Immunopharmacol; 1991; 13(6):669-76. PubMed ID: 1752705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of lymphocyte function by quinones through a sulfhydryl-dependent disruption of microtubule assembly.
    Pfeifer RW; Irons RD
    Int J Immunopharmacol; 1983; 5(5):463-70. PubMed ID: 6654542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific reaction of alpha,beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage.
    Ishiguro K; Ando T; Watanabe O; Goto H
    FEBS Lett; 2008 Oct; 582(23-24):3531-6. PubMed ID: 18805415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxynitrite oxidation of tubulin sulfhydryls inhibits microtubule polymerization.
    Landino LM; Hasan R; McGaw A; Cooley S; Smith AW; Masselam K; Kim G
    Arch Biochem Biophys; 2002 Feb; 398(2):213-20. PubMed ID: 11831852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of cystamine with bovine brain tubulin.
    Banerjee A; Jordan MA; Little M; Luduena RF
    Eur J Biochem; 1987 Jun; 165(2):443-8. PubMed ID: 3595597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition of cytokinesis in sea urchin embryos by low concentrations of stypoldione, a marine natural product that reacts with sulfhydryl groups.
    O'Brien ET; Asai DJ; Jacobs RS; Wilson L
    Mol Pharmacol; 1989 May; 35(5):635-42. PubMed ID: 2725473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effect of levamisole and its sulfhydryl metabolite OMPI against cell death induced by glutathione depletion.
    De Brabander M; Van Belle H; Aerts F; Van De Veire R; Geuens G
    Int J Immunopharmacol; 1979; 1(2):93-100. PubMed ID: 551963
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of a levamisole metabolite (DL-2-Oxo-3-[2-mercaptoethyl]-5-phenylimidazolidine) on carbon clearance in mice.
    Van Ginckel R; De Brabander M
    J Reticuloendothel Soc; 1979 Feb; 25(2):125-31. PubMed ID: 439095
    [No Abstract]   [Full Text] [Related]  

  • 12. The effects of methyl mercury binding to microtubules.
    Vogel DG; Margolis RL; Mottet NK
    Toxicol Appl Pharmacol; 1985 Sep; 80(3):473-86. PubMed ID: 4035699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents.
    Luduena RF; Roach MC
    Pharmacol Ther; 1991; 49(1-2):133-52. PubMed ID: 1852786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of methylmercury and some metal ions on microtubule networks in mouse glioma cells and in vitro tubulin polymerization.
    Miura K; Inokawa M; Imura N
    Toxicol Appl Pharmacol; 1984 Apr; 73(2):218-31. PubMed ID: 6369629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estradiol and testosterone have opposite effects on microtubule polymerization.
    Kipp JL; Ramirez VD
    Neuroendocrinology; 2003 Apr; 77(4):258-72. PubMed ID: 12766326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfhydryl groups of Mimosa pudica tubulin implicated in colchicine binding and polymerization in vitro.
    Roychaudhuri A; Biswas S
    Arch Biochem Biophys; 1992 May; 294(2):353-60. PubMed ID: 1567190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunomodulatory action of levamisole--I. Structural analysis and immunomodulating activity of levamisole degradation products.
    Hanson KA; Nagel DL; Heidrick ML
    Int J Immunopharmacol; 1991; 13(6):655-68. PubMed ID: 1752704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity.
    Gupta K; Panda D
    Biochemistry; 2002 Oct; 41(43):13029-38. PubMed ID: 12390030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC
    Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible regulation of the in vitro assembly of bovine brain tubulin by the bovine thioredoxin system.
    Khan IA; LudueƱa RF
    Biochim Biophys Acta; 1991 Jan; 1076(2):289-97. PubMed ID: 1998728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.