These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 6993454)
1. Fluorescence quenching as an indicator for the exposure of tryptophyl residues in Streptomyces subtilisin inhibitor. Komiyama T; Miwa M J Biochem; 1980 Apr; 87(4):1029-36. PubMed ID: 6993454 [TBL] [Abstract][Full Text] [Related]
2. The influence of temperature and urea on intrinsic fluorescence of Streptomyces subtilisin inhibitor. A study by fluorescence polarization and quenching. Komiyama T; Miwa M; Sato S; Murao S Biochim Biophys Acta; 1977 Jul; 493(1):188-95. PubMed ID: 880313 [TBL] [Abstract][Full Text] [Related]
3. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase. Rust E; Martin DL; Chen CH Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610 [TBL] [Abstract][Full Text] [Related]
4. Solution X-ray scattering analysis of cold- heat-, and urea-denatured states in a protein, Streptomyces subtilisin inhibitor. Konno T; Kataoka M; Kamatari Y; Kanaori K; Nosaka A; Akasaka K J Mol Biol; 1995 Aug; 251(1):95-103. PubMed ID: 7643393 [TBL] [Abstract][Full Text] [Related]
5. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride. France RM; Grossman SH Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481 [TBL] [Abstract][Full Text] [Related]
6. Urea-induced conformational changes in cold- and heat-denatured states of a protein, Streptomyces subtilisin inhibitor. Konno T; Kamatari YO; Kataoka M; Akasaka K Protein Sci; 1997 Oct; 6(10):2242-9. PubMed ID: 9336847 [TBL] [Abstract][Full Text] [Related]
7. The states of tyrosyl and tryptophyl residues in a protein proteinase inhibitor (Streptomyces subtilisin inhibitor. Inouye K; Tonomura B; Hiromi K; Sato S; Murao S J Biochem; 1977 Nov; 82(5):1207-15. PubMed ID: 591497 [TBL] [Abstract][Full Text] [Related]
8. An unusual fluorescence spectrum of a protein proteinase inhibitor, Streptomyces subtilisin inhibitor. Uehara Y; Tonomura B; Hiromi K; Sato S; Murao S Biochim Biophys Acta; 1976 Dec; 453(2):513-20. PubMed ID: 11830 [TBL] [Abstract][Full Text] [Related]
9. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase. Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558 [TBL] [Abstract][Full Text] [Related]
10. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide. Brown MF; Omar S; Raubach RA; Schleich T Biochemistry; 1977 Mar; 16(5):987-92. PubMed ID: 843526 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies. Maity H; Jarori GK Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274 [TBL] [Abstract][Full Text] [Related]
12. Conformational changes of maize and wheat NADP-malic enzyme studied by quenching of protein native fluorescence. Spampinato CP; Ferreyra ML; Andreo CS Int J Biol Macromol; 2007 Jun; 41(1):64-71. PubMed ID: 17292466 [TBL] [Abstract][Full Text] [Related]
13. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
14. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study. Narahari A; Swamy MJ J Photochem Photobiol B; 2009 Oct; 97(1):40-7. PubMed ID: 19700341 [TBL] [Abstract][Full Text] [Related]
15. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission]. Vermishian IG; Sharoian SG; Antonian AA; Grigorian NA; Mardanian SS; Khoetsian AV; Markarian ShA Biofizika; 2008; 53(2):213-21. PubMed ID: 18543763 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin. Sultan NA; Swamy MJ J Photochem Photobiol B; 2005 Aug; 80(2):93-100. PubMed ID: 16038808 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica). Datta D; J Swamy M J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980 [TBL] [Abstract][Full Text] [Related]
18. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching. Flowers S; Biswas EE; Biswas SB Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577 [TBL] [Abstract][Full Text] [Related]