BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 6993454)

  • 1. Fluorescence quenching as an indicator for the exposure of tryptophyl residues in Streptomyces subtilisin inhibitor.
    Komiyama T; Miwa M
    J Biochem; 1980 Apr; 87(4):1029-36. PubMed ID: 6993454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of temperature and urea on intrinsic fluorescence of Streptomyces subtilisin inhibitor. A study by fluorescence polarization and quenching.
    Komiyama T; Miwa M; Sato S; Murao S
    Biochim Biophys Acta; 1977 Jul; 493(1):188-95. PubMed ID: 880313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution X-ray scattering analysis of cold- heat-, and urea-denatured states in a protein, Streptomyces subtilisin inhibitor.
    Konno T; Kataoka M; Kamatari Y; Kanaori K; Nosaka A; Akasaka K
    J Mol Biol; 1995 Aug; 251(1):95-103. PubMed ID: 7643393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urea-induced conformational changes in cold- and heat-denatured states of a protein, Streptomyces subtilisin inhibitor.
    Konno T; Kamatari YO; Kataoka M; Akasaka K
    Protein Sci; 1997 Oct; 6(10):2242-9. PubMed ID: 9336847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The states of tyrosyl and tryptophyl residues in a protein proteinase inhibitor (Streptomyces subtilisin inhibitor.
    Inouye K; Tonomura B; Hiromi K; Sato S; Murao S
    J Biochem; 1977 Nov; 82(5):1207-15. PubMed ID: 591497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unusual fluorescence spectrum of a protein proteinase inhibitor, Streptomyces subtilisin inhibitor.
    Uehara Y; Tonomura B; Hiromi K; Sato S; Murao S
    Biochim Biophys Acta; 1976 Dec; 453(2):513-20. PubMed ID: 11830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase.
    Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M
    Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide.
    Brown MF; Omar S; Raubach RA; Schleich T
    Biochemistry; 1977 Mar; 16(5):987-92. PubMed ID: 843526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes of maize and wheat NADP-malic enzyme studied by quenching of protein native fluorescence.
    Spampinato CP; Ferreyra ML; Andreo CS
    Int J Biol Macromol; 2007 Jun; 41(1):64-71. PubMed ID: 17292466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study.
    Narahari A; Swamy MJ
    J Photochem Photobiol B; 2009 Oct; 97(1):40-7. PubMed ID: 19700341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].
    Vermishian IG; Sharoian SG; Antonian AA; Grigorian NA; Mardanian SS; Khoetsian AV; Markarian ShA
    Biofizika; 2008; 53(2):213-21. PubMed ID: 18543763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin.
    Sultan NA; Swamy MJ
    J Photochem Photobiol B; 2005 Aug; 80(2):93-100. PubMed ID: 16038808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica).
    Datta D; J Swamy M
    J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium.
    Togashi DM; Szczupak B; Ryder AG; Calvet A; O'Loughlin M
    J Phys Chem A; 2009 Mar; 113(12):2757-67. PubMed ID: 19254018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT
    Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.