BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 6993454)

  • 41. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Steady-state fluorescence quenching applications for studying protein structure and dynamics.
    Mátyus L; Szöllosi J; Jenei A
    J Photochem Photobiol B; 2006 Jun; 83(3):223-36. PubMed ID: 16488620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum.
    Kurz LC; Fite B; Jean J; Park J; Erpelding T; Callis P
    Biochemistry; 2005 Feb; 44(5):1394-413. PubMed ID: 15683225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes.
    Abou-Zied OK; Al-Shihi OI
    J Am Chem Soc; 2008 Aug; 130(32):10793-801. PubMed ID: 18642807
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-tryptophan mutants of monomeric tryptophan repressor: optical spectroscopy reveals nonnative structure in a model for an early folding intermediate.
    Shao X; Matthews CR
    Biochemistry; 1998 May; 37(21):7850-8. PubMed ID: 9601046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants.
    Barry JK; Matthews KS
    Biochemistry; 1997 Dec; 36(50):15632-42. PubMed ID: 9398291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of temporary inhibition in Streptomyces subtilisin inhibitor induced by an amino acid substitution, tryptophan 86 replaced by histidine.
    Tamura A; Kanaori K; Kojima S; Kumagai I; Miura K; Akasaka K
    Biochemistry; 1991 May; 30(21):5275-86. PubMed ID: 2036394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Steady state fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1) and its active site mutants.
    Sonawane P; Vishwakarma RK; Singh S; Gaikwad S; Khan BM
    J Fluoresc; 2014 May; 24(3):665-73. PubMed ID: 24322526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of temperature and quencher on the fluorescence of 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one in different solvents.
    Evale BG; Hanagodimath SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1592-9. PubMed ID: 20303824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching- and time-resolved spectroscopy.
    Nishimoto E; Yamashita S; Yamasaki N; Imoto T
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):329-36. PubMed ID: 10192915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complex of subtilisin BPN' with Streptomyces subtilisin inhibitor. Complex formation concomitant with change in reducibility of disulfide bonds in the inhibitor.
    Komiyama T; Oomori A; Fukuyo K; Kanno H; Miwa M
    Int J Pept Protein Res; 1986 Oct; 28(4):325-33. PubMed ID: 3539839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence.
    Tanaka F; Tamai N; Mataga N; Tonomura B; Hiromi K
    Biophys J; 1994 Aug; 67(2):874-80. PubMed ID: 7948700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. States of tryptophyl residues and stability of recombinant human matrix metalloproteinase 7 (matrilysin) as examined by fluorescence.
    Inouye K; Tanaka H; Oneda H
    J Biochem; 2000 Sep; 128(3):363-9. PubMed ID: 10965033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic studies on acid denaturation and renaturation of a protein proteinase inhibitor, Streptomyces subtilisin inhibitor.
    Uehara Y; Tonomura B; Hiromi K
    J Biochem; 1983 Sep; 94(3):903-15. PubMed ID: 6358203
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence quenching studies of bovine growth hormone in several conformational states.
    Havel HA; Kauffman EW; Elzinga PA
    Biochim Biophys Acta; 1988 Jul; 955(2):154-63. PubMed ID: 3395621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence and circular dichroism spectroscopic studies on bovine lactoperoxidase.
    Deva MS; Behere DV
    Biometals; 1999 Sep; 12(3):219-25. PubMed ID: 10581684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dansylation of Streptomyces subtilisin inhibitor: spectrometric analysis of the fluorescence-labeled inhibitor.
    Tanizawa K; Moriya K; Kanaoka Y
    Chem Pharm Bull (Tokyo); 1990 Sep; 38(9):2606-9. PubMed ID: 2285993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hydrophobic quencher of protein fluorescence: 2,2,2-trichloroethanol.
    Eftink MR; Zajicek JL; Ghiron CA
    Biochim Biophys Acta; 1977 Apr; 491(2):473-81. PubMed ID: 857905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.