These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6993477)

  • 21. Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane.
    Inouye S; Wang S; Sekizawa J; Halegoua S; Inouye M
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):1004-8. PubMed ID: 322142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processing in vivo of precursor maltose-binding protein in Escherichia coli occurs post-translationally as well as co-translationally.
    Josefsson LG; Randall LL
    J Biol Chem; 1981 Mar; 256(5):2504-7. PubMed ID: 7007385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation of the mRNA for rabbit uteroglobin in cell-free systems. Evidence for a precursor protein.
    Beato M; Nieto A
    Eur J Biochem; 1976 Apr; 64(1):15-25. PubMed ID: 1278150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro processing by signal peptidase I of precursor maltose-binding protein species with alterations in and around the signal peptide.
    Talarico TL; Barkocy-Gallagher GA; Ray PH; Bassford PJ
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1154-66. PubMed ID: 8280130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The primary structure of L-asparaginase from Escherichia coli.
    Maita T; Matsuda G
    Hoppe Seylers Z Physiol Chem; 1980; 361(2):105-17. PubMed ID: 6766894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo.
    Barkocy-Gallagher GA; Bassford PJ
    J Biol Chem; 1992 Jan; 267(2):1231-8. PubMed ID: 1730647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active site amino acid sequence of human factor D.
    Davis AE
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4938-42. PubMed ID: 6776531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initiation and translation in vitro of mRNA for MOPC 315 immunoglobulin heavy chain and characterization of translation product.
    Bedard DL; Huang RC
    J Biol Chem; 1977 Apr; 252(8):2592-8. PubMed ID: 404294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Processing of a plant vacuolar protein precursor in vitro.
    Hattori T; Ichihara S; Nakamura K
    Eur J Biochem; 1987 Aug; 166(3):533-8. PubMed ID: 3301345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inversion of receptor binding preferences by mutagenesis: free energy thermodynamic integration studies on sugar binding to L-arabinose binding proteins.
    Zacharias M; Straatsma TP; McCammon JA; Quiocho FA
    Biochemistry; 1993 Jul; 32(29):7428-34. PubMed ID: 8338840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Location of three active site residues in the NH2-terminal sequence of the beta 2 subunit tryptophan synthase from Escherichia coli.
    Higgins W; Miles EW; Fairwell T
    J Biol Chem; 1980 Jan; 255(2):512-7. PubMed ID: 6985892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the subunits of beta-conglycinin.
    Coates JB; Medeiros JS; Thanh VH; Nielsen NC
    Arch Biochem Biophys; 1985 Nov; 243(1):184-94. PubMed ID: 3840670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation, characterization and amino acid sequence studies of the cyanogen bromide fragments of the H-2Dd glycoprotein.
    Nairn R; Nathenson SG; Coligan JE
    Eur J Immunol; 1980 Jul; 10(7):495-503. PubMed ID: 7408939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of high density lipoprotein. The immunologic reactivities of the COOH- and NH2-terminal regions of apolipoprotein A-I.
    Schonfeld G; Bradshaw RA; Chen J
    J Biol Chem; 1976 Jul; 251(13):3921-6. PubMed ID: 180010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products.
    Scripture JB; Voelker C; Miller S; O'Donnell RT; Polgar L; Rade J; Horazdovsky BF; Hogg RW
    J Mol Biol; 1987 Sep; 197(1):37-46. PubMed ID: 2445996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The amino acid sequence of Escherichia coli cyanase.
    Chin CC; Anderson PM; Wold F
    J Biol Chem; 1983 Jan; 258(1):276-82. PubMed ID: 6336748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The amino acid sequence of elongation factor Tu of Escherichia coli. The complete sequence.
    Laursen RA; L'Italien JJ; Nagarkatti S; Miller DL
    J Biol Chem; 1981 Aug; 256(15):8102-9. PubMed ID: 7021545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary structure of human alpha 2-macroglobulin. I. Isolation of the 26 CNBr fragments, amino acid sequence of 13 small CNBr fragments, amino acid sequence of methionine-containing peptides, and alignment of all CNBr fragments.
    Sottrup-Jensen L; Stepanik TM; Jones CM; Lønblad PB; Kristensen T; Wierzbicki DM
    J Biol Chem; 1984 Jul; 259(13):8293-303. PubMed ID: 6203904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary structure of the polypeptide chain elongation factor Tu from E. coli. I. Amino acid sequence of fragment B.
    Nakamura S; Nakayama N; Takahashi K; Kaziro Y
    J Biochem; 1982 Mar; 91(3):1047-63. PubMed ID: 7042700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Position of the extra amino acid sequence in the precursor arabinose-binding protein of Escherichia coli.
    Hardy SJ; Randall LL
    J Bacteriol; 1978 Jul; 135(1):291-3. PubMed ID: 353035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.