These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 6994187)

  • 1. Inhibition of protein degradation in the energy-poor heart.
    Rannels DE; Chua B; Kao R; Morgan HE
    Adv Myocardiol; 1980; 1():535-46. PubMed ID: 6994187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal and metabolic control of proteolysis.
    Chua B; Kao R; Rannels DE; Morgan HE
    Biochem Soc Symp; 1978; (43):1-15. PubMed ID: 749913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of coronary perfusion during myocardial hypoxia. Comparison of metabolic and hemodynamic events with global ischemia and hypoxemia.
    Liedtke AJ
    J Thorac Cardiovasc Surg; 1976 May; 71(5):726-35. PubMed ID: 1263557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of anoxia and ischemia on protein synthesis in perfused rat hearts.
    Kao R; Rannels DE; Morgan HE
    Circ Res; 1976 May; 38(5 Suppl 1):I124-30. PubMed ID: 1269087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein degradation and synthesis during recovery from myocardial ischemia.
    Williams EH; Kao RL; Morgan HE
    Am J Physiol; 1981 Mar; 240(3):E268-73. PubMed ID: 7212059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The protective effects of glucose in ischaemia, anoxia and reoxygenation (author's transl)].
    Bugiardini R; Ferrini D; Galvani M; Gridelli C; Tisselli A; Puddu P
    G Ital Cardiol; 1980; 10(11):1471-81. PubMed ID: 6781966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of amino acid methyl esters on cardiac lysosomes and protein degradation.
    Long WM; Chua BH; Lautensack N; Morgan HE
    Am J Physiol; 1983 Jul; 245(1):C101-12. PubMed ID: 6346893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of local noradrenaline release in acute myocardial ischemia.
    Carlsson L
    Acta Physiol Scand Suppl; 1987; 559():1-85. PubMed ID: 3472426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Protective effect of endogenous catecholamine depletion against hypoxic and reoxygenation damage in isolated rat heart: an ultrastructural study (author's transl)].
    Feuvray D; James F; de Leiris J
    J Physiol (Paris); 1980; 76(7):717-22. PubMed ID: 7218160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol.
    Shibano T; Abiko Y
    Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous coronary perfusion during myocardial hypoxia.
    Steenbergen C; Williamson JR
    Adv Myocardiol; 1980; 2():271-84. PubMed ID: 6158751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts.
    Chua B; Kao RL; Rannels DE; Morgan HE
    J Biol Chem; 1979 Jul; 254(14):6617-23. PubMed ID: 447738
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy metabolism of the heart in catecholamine-induced myocardial injury. Concentration-dependent effects of epinephrine on enzyme release, mechanical function, and "oxygen wastage".
    Horak AR; Opie LH
    Adv Myocardiol; 1983; 4():23-43. PubMed ID: 6304827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism.
    Neely JR; Liedtke AJ; Whitmer JT; Rovetto MJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():301-21. PubMed ID: 1215640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ATP metabolites in induction of incomplete recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Miyake K; Fukumoto T
    Can J Cardiol; 1988 May; 4(4):193-200. PubMed ID: 3395917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of low-flow ischemia on K+ fluxes in isolated rat hearts assessed by 87Rb NMR.
    Kupriyanov VV; Xiang B; Kuzio B; Deslauriers R
    J Mol Cell Cardiol; 1999 Apr; 31(4):817-26. PubMed ID: 10329209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of glycolysis in hearts during ischemic perfusion.
    Neely JR; Whitmer JT; Rovetto MJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():243-8. PubMed ID: 5756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin improves cardiac contractile function and oxygen utilization efficiency during moderate ischemia without compromising myocardial energetics.
    Tune JD; Mallet RT; Downey HF
    J Mol Cell Cardiol; 1998 Oct; 30(10):2025-35. PubMed ID: 9799656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium improves mechanical function and carbohydrate metabolism following ischemia in isolated Bi-ventricular working hearts from immature rabbits.
    Itoi T; Lopaschuk GD
    J Mol Cell Cardiol; 1996 Jul; 28(7):1501-14. PubMed ID: 8841937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.