BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 6994811)

  • 1. Kinetics of L-[14C]leucine transport in Saccharomyces cerevisiae: effect of energy coupling inhibitors.
    Ramos EH; de Bongioanni LC; Stoppani AO
    Biochim Biophys Acta; 1980 Jun; 599(1):214-31. PubMed ID: 6994811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid uptake by yeasts. IV. Effect of thiol reagents on L-leucine transport in Saccharomyces cerevisiae.
    Ramos EH; De Bongioanni LC; Wainer SR; Stoppani AO
    Biochim Biophys Acta; 1983 Jun; 731(2):361-72. PubMed ID: 6342674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination of intracellular pH by the distribution of benzoic acid in S. cerevisiae. Amino acid transport and proton gradient].
    de Bongioanni LC; Ramos EH
    Rev Argent Microbiol; 1988; 20(1):1-15. PubMed ID: 2845476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAS2/PKA pathway activity is involved in the nitrogen regulation of L-leucine uptake in Saccharomyces cerevisiae.
    Sáenz DA; Chianelli MS; Stella CA; Mattoon JR; Ramos EH
    Int J Biochem Cell Biol; 1997 Mar; 29(3):505-12. PubMed ID: 9202429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy requirements for the uptake of L-leucine by Saccharomyces cerevisiae.
    Ramos EH; de Bongioanni LC; Claisse ML; Stoppani AO
    Biochim Biophys Acta; 1975 Jul; 394(3):470-81. PubMed ID: 1093572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of thiamine transport in anaerobic baker's yeast by iodoacetate, 2,4-dinitrophenol N,N'-dicyclohexylcarbodiimide and fatty acids.
    Iwashima A; Nose Y
    Biochim Biophys Acta; 1975 Aug; 399(2):375-83. PubMed ID: 1100110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
    Lee-Kaden J; Simonis W
    J Bacteriol; 1982 Jul; 151(1):229-36. PubMed ID: 6806240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of amino acid transport in Saccharomyces cerevisiae by metabolic inhibitors.
    Horák J; Kotyk A; Ríhová L
    Folia Microbiol (Praha); 1978; 23(4):286-91. PubMed ID: 357269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3' :5'-monophosphate in the yeast Schizosaccharomyces pombe.
    Foury F; Goffeau A
    J Biol Chem; 1975 Mar; 250(6):2354-62. PubMed ID: 163826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Proline transport in Saccharomyces cerevisiae.
    Horák J; Ríhová L
    Biochim Biophys Acta; 1982 Sep; 691(1):144-50. PubMed ID: 6753931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic properties, nutrient-dependent regulation and energy coupling of amino-acid transport systems in Penicillium cyclopium.
    Roos W
    Biochim Biophys Acta; 1989 Jan; 978(1):119-33. PubMed ID: 2563328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of ammonium ions on the uptake of L-leucine in Saccharomyces cerevisiae. Repression and inhibition of transport systems].
    Kotliar N; Stella CA; Ramos EH
    Rev Argent Microbiol; 1990; 22(1):7-16. PubMed ID: 2274663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport properties of a C. albicans amino-acid permease whose putative gene was cloned and expressed in S. cerevisiae.
    Sychrová H; Chevallier MR
    Curr Genet; 1993 Dec; 24(6):487-90. PubMed ID: 8299168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in fatty acyl composition can selectively affect amino acid transport in Saccharomyces cerevisiae.
    Mishra P; Prasad R
    Biochem Int; 1987 Sep; 15(3):499-508. PubMed ID: 3122760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1).
    Schreve J; Garrett JM
    Yeast; 1997 Apr; 13(5):435-9. PubMed ID: 9153753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis.
    Eddy AA; Nowacki JA
    Biochem J; 1971 May; 122(5):701-11. PubMed ID: 5129266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chloroquine on membrane permeability in yeast--release of cellular coproporphyrin.
    Kotal P; Kotyk A; Jirsa M; Kordac V
    Int J Biochem; 1988; 20(5):539-42. PubMed ID: 3286314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast.
    Serrano R
    Eur J Biochem; 1980 Apr; 105(2):419-24. PubMed ID: 6247154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.