These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6995028)

  • 81. Tetrameric structure of mitochondrially bound rat brain hexokinase: a crosslinking study.
    Xie G; Wilson JE
    Arch Biochem Biophys; 1990 Jan; 276(1):285-93. PubMed ID: 2297228
    [TBL] [Abstract][Full Text] [Related]  

  • 82. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase.
    Bustamante E; Pedersen PL
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3735-9. PubMed ID: 198801
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Activation of soluble and mitochondrial hexokinase of the rat brain by Triton X-100].
    Teichgräber P; Biesold D; Arnold R
    Acta Biol Med Ger; 1973; 30(6):795-801. PubMed ID: 4762707
    [No Abstract]   [Full Text] [Related]  

  • 84. Influence of Ca2+ on the isolation from rat brain mitochondria of a fraction enriched of boundary membrane contact sites.
    Sandri G; Siagri M; Panfili E
    Cell Calcium; 1988 Aug; 9(4):159-65. PubMed ID: 3191526
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The latent hexokinase activity of rat brain mitochondria.
    Wilson JE
    Biochem Biophys Res Commun; 1967 Jul; 28(1):123-7. PubMed ID: 6049846
    [No Abstract]   [Full Text] [Related]  

  • 86. Modifications in energy metabolism during the development of chick glial cells and neurons in culture.
    Tholey G; Ledig M; Mandel P
    Neurochem Res; 1982 Jan; 7(1):27-36. PubMed ID: 7070578
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Subcellular distribution of arginase and gamma-guanidino-butyrate-ureohydrolase in brain sections, neurons and glia].
    Shugalei VS; Chupich ZH; Iapundzhich I; Rakich L
    Biokhimiia; 1977 Jan; 42(1):67-73. PubMed ID: 856303
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP.
    BeltrandelRio H; Wilson JE
    Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Development of mitochondrial energy metabolism in rat brain.
    Land JM; Booth RF; Berger R; Clark JB
    Biochem J; 1977 May; 164(2):339-48. PubMed ID: 880241
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Influence of various lipophilic drugs on brain mitochondrial hexokinase.
    Hanke J; Höfeler H; Krieglstein J; Wever K
    Naunyn Schmiedebergs Arch Pharmacol; 1979 Jun; 307(2):171-6. PubMed ID: 481616
    [No Abstract]   [Full Text] [Related]  

  • 91. Solubilization of brain mitochondrial hexokinase by thiopental.
    Bielicki L; Krieglstein J
    Naunyn Schmiedebergs Arch Pharmacol; 1977 May; 298(1):61-5. PubMed ID: 882149
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The metabolism of the small intestine: dietary induction, subcellular distribution and isoenzyme pattern of some key enzymes of glucose metabolism in ovine jejunal mucosa.
    Wahle KW
    Comp Biochem Physiol B; 1973 Dec; 46(4):727-39. PubMed ID: 4763292
    [No Abstract]   [Full Text] [Related]  

  • 93. Effect of ligands on the reactivity of essential sulfhydryls in brain hexokinase. Possible interaction between substrate binding sites.
    Redkar VD; Kenkare UW
    Biochemistry; 1975 Oct; 14(21):4704-12. PubMed ID: 1237313
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effect of hypoxia and pharmacological treatment on some enzyme activities in dog brain areas.
    Arrigoni E; Benzi G; Curti D; Dagani F; Gallico S; Gorini A; Mandelli V; Marzatico F; Moretti A; Villa RF
    Arch Int Pharmacodyn Ther; 1984 May; 269(1):111-40. PubMed ID: 6235788
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation.
    Vicente-Rodríguez M; Singh N; Turkheimer F; Peris-Yague A; Randall K; Veronese M; Simmons C; Karim Haji-Dheere A; Bordoloi J; Sander K; Awais RO; Årstad E; Nima Consortium ; Cash D; Parker CA
    Brain Behav Immun; 2021 Aug; 96():154-167. PubMed ID: 34052363
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A trade-off between thickness and length in the zebra finch sperm mid-piece.
    Mendonca T; Birkhead TR; Cadby AJ; Forstmeier W; Hemmings N
    Proc Biol Sci; 2018 Jul; 285(1883):. PubMed ID: 30051869
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.
    Patching SG
    Mol Neurobiol; 2017 Mar; 54(2):1046-1077. PubMed ID: 26801191
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The mitochondrial localization of hexokinase in pea leaves.
    Dry IB; Nash D; Wiskich JT
    Planta; 1983 Jun; 158(2):152-6. PubMed ID: 24264544
    [TBL] [Abstract][Full Text] [Related]  

  • 99. "Ambiquitous" behavior of brain hexokinase: rapid and reversible interaction of hexokinase with the outer mitochondrial membrane.
    Wilson JE
    Biophys J; 1982 Jan; 37(1):18-9. PubMed ID: 19431468
    [No Abstract]   [Full Text] [Related]  

  • 100. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants.
    Damari-Weissler H; Kandel-Kfir M; Gidoni D; Mett A; Belausov E; Granot D
    Planta; 2006 Nov; 224(6):1495-502. PubMed ID: 16977457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.