BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6995224)

  • 1. [Genetico-biochemical study of the acid phosphatases of Saccharomyces cerevisiae yeasts. X. Analysis of mutations arising in gene acp3].
    Kozhin SA; Samsonova MG; Maarich MA; Smirnov MN
    Genetika; 1980; 16(3):408-17. PubMed ID: 6995224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Genetico-biochemical study of acid phosphatases in Saccharomyces cerevisiae yeast. V. Genetic control of regulation of acid phosphatase II synthesis].
    Samsonova MG; Padkina MV; Krasnopevtseva NG; Kozhin SA; Smirnov MN
    Genetika; 1975; 11(9):104-15. PubMed ID: 765203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genetic-biochemical study of acid phosphatases from Saccharomyces cerevisiae yeasts. IV. Genetic control of acid phosphatase II activity].
    Kozhin SA; Samsonova MG
    Genetika; 1975; 11(7):104-12. PubMed ID: 767209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Genetic mapping of genes regulating synthesis of acid phosphatases in the yeast Saccharomyces cerevisiae of the Peterhoff yeast collection].
    Sambuk EV; Kuchkartaev AI; Padkina MV; Smirnov MN
    Genetika; 1991 Apr; 27(4):644-8. PubMed ID: 1879680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene duplication in Saccharomyces cerevisiae.
    Hansche PE; Beres V; Lange P
    Genetics; 1978 Apr; 88(4 Pt 1):673-87. PubMed ID: 348562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV; Alenin VV; Kozhin SA
    Genetika; 1985 Sep; 21(9):1449-54. PubMed ID: 3905510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interrelationship between metabolic and genetic regulation of alkaline and acid phosphatases in E. coli cells].
    Nesmeianova MA; Maraeva OB; Kolot MN; Kulaev IS
    Biokhimiia; 1978 Oct; 43(10):1783-9. PubMed ID: 363175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and genetic evidence that yeast extracellular protein phosphatase activity is due to acid phosphatase.
    Lopandic K; Deana AD; Barbaric S; Pinna LA
    Biochem Int; 1987 Apr; 14(4):627-33. PubMed ID: 2839178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, carbohydrate composition and kinetic properties of the constitutive yeast acid phosphatase.
    Mrsa V; Barbarić S; Ries B; Mildner P
    Biochem Int; 1985 Apr; 10(4):567-75. PubMed ID: 3896242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic polymorphism of rabbit (Oryctolagus cuniculus) tissue acid phosphatases (ACP2 and ACP3).
    Branco M; Ferrand N
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Jun; 120(2):405-9. PubMed ID: 9787802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of the ACC1/FAS3 gene to the right arm of chromosome XIV of Saccharomyces cerevisiae.
    Guerra CE; Klein HL
    Yeast; 1995 Jun; 11(7):697-700. PubMed ID: 7483843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae.
    To-E A; Ueda Y; Kakimoto SI; Oshima Y
    J Bacteriol; 1973 Feb; 113(2):727-38. PubMed ID: 4570606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae.
    Bun-ya M; Shikata K; Nakade S; Yompakdee C; Harashima S; Oshima Y
    Curr Genet; 1996 Mar; 29(4):344-51. PubMed ID: 8598055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition.
    Shnyreva MG; Petrova EV; Egorov SN; Hinnen A
    Microbiol Res; 1996 Aug; 151(3):291-300. PubMed ID: 8817921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae.
    Toh-e A; Kakimoto S
    Mol Gen Genet; 1975 Dec; 143(1):65-70. PubMed ID: 765744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of mutations in PHO85 and PHO4 genes on utilization of proline in Saccharomyces cerevisiae yeasts].
    Popova IuG; Padkina MV; Sambuk EV
    Genetika; 2000 Dec; 36(12):1622-8. PubMed ID: 11190469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Ueda Y; To-E A; Oshima Y
    J Bacteriol; 1975 Jun; 122(3):911-22. PubMed ID: 1097406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae.
    Toh-e A; Inouye S; Oshima Y
    J Bacteriol; 1981 Jan; 145(1):221-32. PubMed ID: 7007314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIM1, a new yeast Saccharomyces cerevisiae gene playing a role in control of spontaneous and induced mutagenesis.
    Kelberg EP; Kovaltsova SV; Alekseev SY; Fedorova IV; Gracheva LM; Evstukhina TA; Korolev VG
    Mutat Res; 2005 Oct; 578(1-2):64-78. PubMed ID: 15885712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.