These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6995427)

  • 1. Choline transport in Saccharomyces cerevisiae.
    Hosaka K; Yamashita S
    J Bacteriol; 1980 Jul; 143(1):176-81. PubMed ID: 6995427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myo-inositol transport in Saccharomyces cerevisiae.
    Nikawa J; Nagumo T; Yamashita S
    J Bacteriol; 1982 May; 150(2):441-6. PubMed ID: 7040334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the phosphatidylethanolamine methylation pathway in Saccharomyces cerevisiae.
    Yamashita S; Oshima A; Nikawa J; Hosaka K
    Eur J Biochem; 1982 Nov; 128(2-3):589-95. PubMed ID: 6759124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanolamine and choline transport in cultured bovine aortic endothelial cells.
    Lipton BA; Yorek MA; Ginsberg BH
    J Cell Physiol; 1988 Dec; 137(3):571-6. PubMed ID: 3192633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy requirements for the uptake of L-leucine by Saccharomyces cerevisiae.
    Ramos EH; de Bongioanni LC; Claisse ML; Stoppani AO
    Biochim Biophys Acta; 1975 Jul; 394(3):470-81. PubMed ID: 1093572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na(+)-dependent and Na(+)-independent systems of choline transport by plasma membrane vesicles of A549 cell line.
    Kleinzeller A; Dodia C; Chander A; Fisher AB
    Am J Physiol; 1994 Nov; 267(5 Pt 1):C1279-87. PubMed ID: 7977691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa.
    Hoshino T; Kageyama M
    J Bacteriol; 1979 Jan; 137(1):73-81. PubMed ID: 83991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of amino acid transport in Saccharomyces cerevisiae by metabolic inhibitors.
    Horák J; Kotyk A; Ríhová L
    Folia Microbiol (Praha); 1978; 23(4):286-91. PubMed ID: 357269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active transport of choline by a marine pseudomonad.
    Snipes W; Keith A; Wanda P
    J Bacteriol; 1974 Oct; 120(1):197-202. PubMed ID: 4214506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylcholine biosynthesis via the CDP-choline pathway in Saccharomyces cerevisiae. Multiple mechanisms of regulation.
    McMaster CR; Bell RM
    J Biol Chem; 1994 May; 269(20):14776-83. PubMed ID: 8182083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allantoate transport in Saccharomyces cerevisiae.
    Turoscy V; Cooper TG
    J Bacteriol; 1979 Dec; 140(3):971-9. PubMed ID: 42640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet.
    Yamada N; Sakakibara S; Tsutsumi K; Waditee R; Tanaka Y; Takabe T
    J Plant Physiol; 2011 Sep; 168(14):1609-16. PubMed ID: 21511362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae.
    McGee TP; Skinner HB; Bankaitis VA
    J Bacteriol; 1994 Nov; 176(22):6861-8. PubMed ID: 7961445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choline transport in Fusarium graminearum A 3/5.
    Robson GD; Best LC; Wiebe MG; Trinci AP
    FEMS Microbiol Lett; 1992 May; 71(3):247-51. PubMed ID: 1624123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of choline transport at maternal and fetal interfaces of the perfused guinea-pig placenta.
    Sweiry JH; Yudilevich DL
    J Physiol; 1985 Sep; 366():251-66. PubMed ID: 4057092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter.
    Aliverdieva DA; Mamaev DV; Bondarenko DI; Sholtz KF
    Biochemistry (Mosc); 2006 Oct; 71(10):1161-9. PubMed ID: 17125465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of the Saccharomyces cerevisiae EKI1 gene encoding ethanolamine kinase.
    Kim K; Kim KH; Storey MK; Voelker DR; Carman GM
    J Biol Chem; 1999 May; 274(21):14857-66. PubMed ID: 10329685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of choline transport and its role in the stimulation of the incorporation of choline into phosphatidylcholine by polyamines in a polyamine auxotroph of Saccharomyces cerevisiae.
    Hosaka K; Yamashita S
    Eur J Biochem; 1981 May; 116(1):1-6. PubMed ID: 7018900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitors of choline transport in alveolar type II epithelial cells.
    Dodia C; Fisher AB; Chander A; Kleinzeller A
    Am J Respir Cell Mol Biol; 1992 Apr; 6(4):426-9. PubMed ID: 1550688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of a gene encoding choline transport in Saccharomyces cerevisiae.
    Nikawa J; Tsukagoshi Y; Yamashita S
    J Bacteriol; 1986 Apr; 166(1):328-30. PubMed ID: 3514579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.