BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 6995433)

  • 1. Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli.
    Cooper RA; Skinner MA
    J Bacteriol; 1980 Jul; 143(1):302-6. PubMed ID: 6995433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase.
    Skinner MA; Cooper RA
    Arch Microbiol; 1982 Sep; 132(3):270-5. PubMed ID: 6756331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of meta-cleavage degradation of 4-hydroxyphenylacetate in Pseudomonas putida.
    Barbour MG; Bayly RC
    J Bacteriol; 1981 Sep; 147(3):844-50. PubMed ID: 6895079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases.
    Sparnins VL; Dagley S
    J Bacteriol; 1975 Dec; 124(3):1374-81. PubMed ID: 1194238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.
    Xun L; Sandvik ER
    Appl Environ Microbiol; 2000 Feb; 66(2):481-6. PubMed ID: 10653707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catabolism of L-tyrosine by an Arthrobacter sp.
    Blakley ER
    Can J Microbiol; 1977 Sep; 23(9):1128-39. PubMed ID: 20216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
    Sparnins VL; Chapman PJ; Dagley S
    J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria.
    Sparnins VL; Chapman PJ
    J Bacteriol; 1976 Jul; 127(1):362-6. PubMed ID: 931949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxymethylhydroxymuconic semialdehyde dehydrogenase in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli.
    Alonso JM; Garrido-Pertierra A
    Biochim Biophys Acta; 1982 Oct; 719(1):165-7. PubMed ID: 6756482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of 3- and 4-hydroxyphenylacetic acid by Klebsiella pneumoniae.
    Martín M; Gibello A; Fernández J; Ferrer E; Garrido-Pertierra A
    J Gen Microbiol; 1991 Mar; 137(3):621-8. PubMed ID: 1851804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY.
    Guo W; Zhou W; Zhou H; Chen X
    BMC Microbiol; 2019 Feb; 19(1):40. PubMed ID: 30760216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid substitution in aromatic hydroxylase (HpaB) of Escherichia coli alters substrate specificity of the structural isomers of hydroxyphenylacetate.
    Kim H; Kim S; Kim D; Yoon SH
    BMC Microbiol; 2020 May; 20(1):109. PubMed ID: 32375644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. strain CBS3.
    Markus A; Klages U; Krauss S; Lingens F
    J Bacteriol; 1984 Nov; 160(2):618-21. PubMed ID: 6501216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster.
    Prieto MA; Díaz E; García JL
    J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X. Physiological resemblance with other gram-negative bacteria.
    van den Tweel WJ; Janssens RJ; de Bont JA
    Antonie Van Leeuwenhoek; 1986; 52(4):309-18. PubMed ID: 3767351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities.
    Ferrer-Sevillano F; Fernández-Cañón JM
    Eukaryot Cell; 2007 Mar; 6(3):514-20. PubMed ID: 17189487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutants defective in isomerase and decarboxylase activities of the 4-hydroxyphenylacetic acid meta-cleavage pathway in Pseudomonas putida.
    Barbour MG; Bayly RC
    J Bacteriol; 1980 May; 142(2):480-5. PubMed ID: 6769900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon.
    Barnes MR; Duetz WA; Williams PA
    J Bacteriol; 1997 Oct; 179(19):6145-53. PubMed ID: 9324265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways.
    Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM
    Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.