These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6995436)

  • 1. Induction of normal ascosporogenesis in two-spored Saccharomyces cerevisiae by glucose, acetate, and zinc.
    Bilinski CA; Miller JJ
    J Bacteriol; 1980 Jul; 143(1):343-8. PubMed ID: 6995436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial restoration of meiosis in an apomictic strain of Saccharomyces cerevisiae: a model system for investigation of nucleomitochondrial interactions during sporulation.
    Marmiroli N; Bilinski CA
    Yeast; 1985 Sep; 1(1):39-47. PubMed ID: 3916858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of multispored asci in two-spored strains of Saccharomyces cerevisiae by amitrole.
    Ashraf M; Miller JJ
    Can J Microbiol; 1977 Jun; 23(6):690-4. PubMed ID: 326361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts.
    Codón AC; Gasent-Ramírez JM; Benítez T
    Appl Environ Microbiol; 1995 Feb; 61(2):630-8. PubMed ID: 7574601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Events associated with restoration by zinc of meiosis in apomictic Saccharomyces cerevisiae.
    Bilinski CA; Miller JJ; Girvitz SC
    J Bacteriol; 1983 Sep; 155(3):1178-84. PubMed ID: 6350265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sporulation in single-spore isolates from amitrole-induced multispored asci of Saccharomyces cerevisiae.
    Ashraf M; Miller JJ
    Can J Microbiol; 1978 Dec; 24(12):1614-5. PubMed ID: 371773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of apomictic wine yeasts.
    Castrejón F; Martínez-Force E; Benítez T; Codón AC
    Curr Genet; 2004 Apr; 45(4):187-96. PubMed ID: 14760507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on sporulation-promotive actions on cyclic AMP, theophylline and caffeine in Saccharomyces cerevisiae.
    Tsuboi M; Yanagishima N
    Arch Microbiol; 1975 Oct; 105(2):83-6. PubMed ID: 173249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-spored asci produced by interrupted sporulation: a novel approach to linkage analysis in yeast.
    Srivastava PK; Harashima S; Oshima Y
    Mol Gen Genet; 1983; 191(1):165-6. PubMed ID: 6350824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation.
    Freese EB; Chu MI; Freese E
    J Bacteriol; 1982 Mar; 149(3):840-51. PubMed ID: 7037742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the lipid composition and fine structure of Saccharomyces cerevisiae during ascus formation.
    Illingworth RF; Rose AH; Beckett A
    J Bacteriol; 1973 Jan; 113(1):373-86. PubMed ID: 4569408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of SPO12-1 and SPO13-1 from a natural variant of yeast that undergoes a single meiotic division.
    Klapholz S; Esposito RE
    Genetics; 1980 Nov; 96(3):567-88. PubMed ID: 7021311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional protein patterns during growth and sporulation in Saccharomyces cerevisiae.
    Trew BJ; Friesen JD; Moens PB
    J Bacteriol; 1979 Apr; 138(1):60-9. PubMed ID: 374377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascus development in two temperature-sensitive four-spore mutants of Neurospora crassa.
    Raju NB
    Can J Genet Cytol; 1986 Dec; 28(6):982-90. PubMed ID: 2950989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of sporulation in yeast strains with two-spored asci (Saccharomyces, Ascomycetes).
    Moens PB
    J Cell Sci; 1974 Dec; 16(3):519-27. PubMed ID: 4615102
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of the yeast SPS19 gene encoding peroxisomal 2,4-dienoyl-CoA reductase by the transcription factors Pip2p and Oaf1p: beta-oxidation is dispensable for Saccharomyces cerevisiae sporulation in acetate medium.
    Gurvitz A; Rottensteiner H; Hiltunen JK; Binder M; Dawes IW; Ruis H; Hamilton B
    Mol Microbiol; 1997 Nov; 26(4):675-85. PubMed ID: 9427398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic fluxes regulate the success of sporulation in Saccharomyces cerevisiae.
    Aon JC; Rapisarda VA; Cortassa S
    Exp Cell Res; 1996 Jan; 222(1):157-62. PubMed ID: 8549658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of sporulation and metabolic fluxes in Saccharomyces cerevisiae by 2 deoxy glucose.
    Aon JC; Aon MA; Spencer JF; Cortassa S
    Antonie Van Leeuwenhoek; 1997 Nov; 72(4):283-90. PubMed ID: 9442269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential Occurrence of Nonsister Spores in Two-Spored Asci of SACCHAROMYCES CEREVISIAE: Evidence for Regulation of Spore-Wall Formation by the Spindle Pole Body.
    Davidow LS; Goetsch L; Byers B
    Genetics; 1980 Mar; 94(3):581-95. PubMed ID: 17249010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substructural studies on sporulation of Saccharomycopsis lipolytica.
    Weber H
    Z Allg Mikrobiol; 1979; 19(4):283-97. PubMed ID: 538958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.