These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6996442)

  • 1. Rapid development of hypersensitivity and hyposensitivity to apomorphine and haloperidol: role of norepinephrine receptor mechanisms in CNS.
    Cools AR
    Adv Biochem Psychopharmacol; 1980; 24():215-22. PubMed ID: 6996442
    [No Abstract]   [Full Text] [Related]  

  • 2. Antagonism by neuroleptics of abnormal behavior induced by activation of brain dopamine receptors.
    Van Rossum JM
    Mod Probl Pharmacopsychiatry; 1970; 5():65-7. PubMed ID: 5527171
    [No Abstract]   [Full Text] [Related]  

  • 3. [Pharmacological analysis of the participation of the catecholaminergic system in the development of the abstinence syndrome in rats].
    Varkov AI
    Farmakol Toksikol; 1985; 48(6):11-3. PubMed ID: 3002844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsensitivity of the presynaptic dopamine receptors in cat heart after the termination of chronic haloperidol treatment.
    Verimer T; Long JP; Flynn JR; Arnerić SP; Walsh BJ
    Arch Int Pharmacodyn Ther; 1981 Oct; 253(2):233-40. PubMed ID: 7198898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monosialoganglioside (GM1) attenuates the behavioural effects of long-term haloperidol administration in supersensitive rats.
    Perry JC; Vital MA; Frussa-Filho R; Tufik S; Palermo-Neto J
    Eur Neuropsychopharmacol; 2004 Mar; 14(2):127-33. PubMed ID: 15013028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substance P levels in the rat forebrain after apomorphine and haloperidol treatment.
    Janicki P; Lypko A; Szczudlik A; Libich J
    Pol J Pharmacol Pharm; 1981; 33(5):499-502. PubMed ID: 6174959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The behavioral and neurochemical changes in rats caused by the subchronic administration of haloperidol].
    Shevchenko TP; Tolpyshev BA; Zban' LN
    Eksp Klin Farmakol; 1993; 56(3):15-7. PubMed ID: 8219980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apomorphine-induced hypothermia in mice; a possible dopaminergic effect.
    Barnett A; Goldstein J; Taber RI
    Arch Int Pharmacodyn Ther; 1972 Aug; 198(2):242-7. PubMed ID: 5054733
    [No Abstract]   [Full Text] [Related]  

  • 9. [Compounds stimulating central catecholamine receptors].
    Grabowska M
    Postepy Hig Med Dosw; 1973; 27(2):209-39. PubMed ID: 4787947
    [No Abstract]   [Full Text] [Related]  

  • 10. [Functional role of noradrenergic neurons in the hypothermic effect of apomorphine and other dopaminomimetics].
    Shchelkunov EL; Andreeva OG; Korovin KF; Ostroumova MN
    Farmakol Toksikol; 1980; 43(5):558-63. PubMed ID: 7449984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D2 dopamine antisense RNA expression vector, unlike haloperidol, produces long-term inhibition of D2 dopamine-mediated behaviors without causing Up-regulation of D2 dopamine receptors.
    Davidkova G; Zhou LW; Morabito M; Zhang SP; Weiss B
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1187-96. PubMed ID: 9618422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the functional role of pre- and postsynaptic catecholamine receptors in brain.
    Strömbom U
    Acta Physiol Scand Suppl; 1975; 431():1-43. PubMed ID: 181950
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of substances acting on the central adrenergic receptor on open field behaviour in rats.
    Dandiya PC; Patni SK
    Indian J Med Res; 1973 Jun; 61(6):891-5. PubMed ID: 4754333
    [No Abstract]   [Full Text] [Related]  

  • 14. [Influence of the intracaudate administration of kainic acid on the effects of the prolonged use of haloperidol and apomorphine on rats].
    Zharkovskiĭ AM; Allikmets LKh; Nurk AM
    Farmakol Toksikol; 1982; 45(1):10-2. PubMed ID: 7198997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cerebral dopamine function induced by a year's administration of trifluoperazine or thioridazine and their subsequent withdrawal.
    Clow A; Theodorou A; Jenner P; Marsden CD
    Adv Biochem Psychopharmacol; 1980; 24():335-40. PubMed ID: 7190762
    [No Abstract]   [Full Text] [Related]  

  • 16. Long-term haloperidol treatment (but not risperidone) enhances addiction-related behaviors in mice: role of dopamine D2 receptors.
    Carvalho RC; Fukushiro DF; Helfer DC; Callegaro-Filho D; Trombin TF; Zanlorenci LH; Sanday L; Silva RH; Frussa-Filho R
    Addict Biol; 2009 Jul; 14(3):283-93. PubMed ID: 19298320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous and drug-induced changes of cerebral dopamine turnover during postnatal development of rats.
    Keller HH; Bartholini G; Pletscher A
    Brain Res; 1973 Dec; 64():371-8. PubMed ID: 4781347
    [No Abstract]   [Full Text] [Related]  

  • 18. Haloperidol and the significance of alpha-NE mediated control of a subpopulation of DA receptors for concepts such as supersensitivity and tolerance: a behavioral study on cats.
    Cools AR
    Life Sci; 1978 Dec; 23(25):2475-83. PubMed ID: 215864
    [No Abstract]   [Full Text] [Related]  

  • 19. D2 but not D3 receptors are elevated after 9 or 11 months chronic haloperidol treatment: influence of withdrawal period.
    Joyce JN
    Synapse; 2001 May; 40(2):137-44. PubMed ID: 11252025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine synthesis: tolerance to haloperidol and supersensitivity to apomorphine depend on presynaptic receptors.
    Biggio G; Casu M; Klimek V; Gessa GL
    Adv Biochem Psychopharmacol; 1980; 24():17-22. PubMed ID: 6996441
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.