These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 6996715)
1. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4021-30. PubMed ID: 6996714 [TBL] [Abstract][Full Text] [Related]
3. 113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases. Gettins P; Coleman JE J Biol Chem; 1983 Jan; 258(1):396-407. PubMed ID: 6336752 [TBL] [Abstract][Full Text] [Related]
4. Nuclear magnetic resonance investigation of cadmium 113 substituted pea and lentil lectins. Bhattacharyya L; Marchetti PS; Ellis PD; Brewer CF J Biol Chem; 1987 Apr; 262(12):5616-21. PubMed ID: 3571225 [TBL] [Abstract][Full Text] [Related]
11. Cadmium-substituted skeletal troponin C. Cadmium-113 NMR spectroscopy and metal binding investigations. Ellis PD; Strang P; Potter JD J Biol Chem; 1984 Aug; 259(16):10348-56. PubMed ID: 6469967 [TBL] [Abstract][Full Text] [Related]
12. 113Cd nuclear magnetic resonance (NMR) study of the inhibitory effect of methylvinylether/maleic acid (PVM/MA) copolymer on the alkaline phosphatase of Escherichia coli. Afflitto J; Smith KA; Patel M; Esposito A; Jensen E; Gaffar A Pharm Res; 1991 Nov; 8(11):1384-8. PubMed ID: 1798674 [TBL] [Abstract][Full Text] [Related]
13. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR. Gettins P; Coleman JE J Biol Chem; 1984 Sep; 259(17):11036-40. PubMed ID: 6381493 [TBL] [Abstract][Full Text] [Related]
14. 113Cd NMR study of bovine prothrombin fragment 1 and factor X. Kingsley-Hickman PB; Nelsestuen GL; Uğurbil K Biochemistry; 1986 Jun; 25(11):3352-5. PubMed ID: 3755356 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the histidine residues in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Otvos JD; Browne DT Biochemistry; 1980 Aug; 19(17):4011-21. PubMed ID: 6996713 [TBL] [Abstract][Full Text] [Related]
16. Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase. Cioni P; Piras L; Strambini GB Eur J Biochem; 1989 Nov; 185(3):573-9. PubMed ID: 2686989 [TBL] [Abstract][Full Text] [Related]
17. 13C and 113Cd NMR studies of the chelation of metal ions by the calcium binding protein parvalbumin. Bjornson ME; Corson DC; Sykes BD J Inorg Biochem; 1985 Oct; 25(2):141-9. PubMed ID: 3932596 [TBL] [Abstract][Full Text] [Related]
18. Evidence for site-selective metal binding in calf liver metallothionein. Briggs RW; Armitage IM J Biol Chem; 1982 Feb; 257(3):1259-62. PubMed ID: 7056717 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy. Omburo GA; Mullins LS; Raushel FM Biochemistry; 1993 Sep; 32(35):9148-55. PubMed ID: 8396425 [TBL] [Abstract][Full Text] [Related]
20. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. Coleman JE; Nakamura K; Chlebowski JF J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]